Senecio vulgaris L. recorded as a new host plant for the root-knot nematode Meloidogyne luci

Nik SUSIČ, Saša ŠIRCA, Gregor UREK, Barbara GERIČ STARE

Received February 10, 2020; accepted April 27, 2020.

Abstract: Meloidogyne luci is a polyphagous plant parasitic nematode species with a potential to cause great losses in agricultural production. M. luci can parasitize over thirty important crop species as well as ornamentals, herbs and weeds. In this report we documented a weed plant common groundsel (Senecio vulgaris L.) as a new naturally-infected host species which could act as a reservoir for this pest.

Key words: root-knot nematode; Meloidogyne luci; weed; host plant; Senecio vulgaris; common groundsel; reservoir

Dokumentiranje nove gostiteljske rastline Senecio vulgaris L. za rastlinsko parazitsko ogorčico Meloidogyne luci

Izvleček: Meloidogyne luci je polifagna rastlinsko parazitska ogorčica, ki je zmožna povzročiti velike izgube v kmetijski proizvodnji. Ogorčica M. luci lahko namreč parazitira prek trideset pomembnih kmetijskih rastlinnih vrst kot tudi okrasne rastline, zelišča in plevele. V tem prispevku smo dokumentirali plevelno rastlino navadni grint (Senecio vulgaris L.) kot novo, naravno okuženo gostiteljsko rastlino, ki lahko služi kot rezervoar za omenjenega škodljivca.

Ključne besede: ogorčice koreninskih šišk; Meloidogyne luci; plevel; gostiteljska rastlina; Senecio vulgaris; rezervoar

1 Agricultural Institute of Slovenia, Plant Protection Department, Ljubljana, Slovenia
2 Corresponding author, e-mail: barbara.geric@kis.si

Acta Agriculturae Slovenica, 115/2, 495–497, Ljubljana 2020
1 SHORT COMMUNICATION

Meloidogyne luci Carneiro et al. 2014 is a recently described root-knot nematode species with a potential to cause great losses in agricultural production (Carneiro et al., 2014). This plant parasitic nematode is prevalent in South America, Europe and Asia as its presence was documented in Argentina, Bolivia, Brazil, Chile, Ecuador, Greece, Guatemala, Iran, Italy, Portugal, Slovenia and Turkey (reviewed in Carneiro et al., 2014; Janssen et al., 2016; Maleita et al., 2018; reviewed in Gerič Stare et al., 2017). Its distribution may be even broader than reported as species identification is challenging and was misidentified as *Meloidogyne ethiopica* (Whitehead,1968, reviewed in Gerič Stare et al., 2017). Its distribution may be even broader than reported as species identification is challenging and was misidentified as *Meloidogyne ethiopica* (Whitehead,1968, reviewed in Gerič Stare et al., 2017). Important crop plants such as potato (*Solanum tuberosum* L.), maize (*Zea mays* L.) and tomato (*Solanum lycopersicum* L.) are host plants for *M. luci* (Strajnar et al., 2011; Conceição et al., 2012; Santos et al., 2019; Maleita et al., 2018), which could have serious impact for agricultural production in Europe and world-wide. This polyphagous pest can further parasitize numerous crop species such as okra (*Abelmoschus esculentus* (L.) Moench), kiwifruit (*Actinidia deliciosa* (A.Chev.) C.F.Liang & A.R.Ferguson), onion (*Allium cepa* L.), celery (*Apium graveolens* L.), chard (*Beta vulgaris* var. cicla (L.) Schuebl. & G.Martens), beet (*Beta vulgaris* var. conditiva L.), cabbage (*Brassica oleracea* var. capitata L.), cauliflower (*Brassica oleracea* var. botrytis L.), kohlrabi (*Brassica oleracea* var. gongylodes L.), broccoli (*Brassica oleracea* var. *italica* Plenck), pepper (*Capsicum annuum* L.), endive (*Cichorium endivia* L.), chicory (*Cichorium intybus* var. foliosum L.), melon (*Cucumis melo* L.), watermelon (*Citrullus lanatus* (Thunb.) Matsum. & Nakai); cucumber (*Cucumis sativus* L.), carrot (*Daucus carota* L.), buckwheat (*Fagopyrum esculentum* Moench), florence fennel (*Foeniculum vulgare* Mill. ssp. *vulgare* var. *azoricum* (Mill.) Thell.), soybean (*Glycine max* (L.) Merr.), sunflower (*Helianthus annuus* L.), barley (*Hordeum vulgare* L.), lettuce (*Lactuca sativa* L.), lucerne (*Medicago sativa* L.), tobacco (*Nicotiana tabacum* L.), rice (*Oryza sativa* L.), common bean (*Phaseolus vulgaris* L.), pea (*Pisum sativum* L.), yakon (*Smallanthus sonchifolius* (Poepp.) H.Rob.), peach (*Prunus persica* (L.) Batsch), radish (*Raphanus sativus* L. var. *radicula*), aubergine (*Solanum melongena* L.), spinach (*Spinacia oleracea* L.), grapevine (*Vitis vinifera* L.) and sweet corn (*Zea mays* L. var. *saccharata*) (Strajnar et al., 2009; Carneiro et al., 2014; Santos et al., 2019). As there is a great concern that this pest could spread to new areas with suitable hosts and climate conditions, the species was included in the EPPO Alert list of harmful organisms (EPPO, 2017).

We have tested efficiency of bionematicide VOTIVO™ (Bayer CropScience AG) based on bacteria *Bacillus firmus* Bredemann and Werner, 1933, for the protection of tomato plants against infestation with *M. luci* (Susič et al., 2020; Širca et al., 2019). The test was conducted in the microplots at the site of Agricultural Institute of Slovenia from April to September in 2018 and 2019. At the end of a growing season 2019 (114 days after nematode infestation) when tomato plants were uprooted and evaluated...
for nematode infestation several weed plants were found growing in the microplots as well. The weed was identified as common groundsel (Senecio vulgaris L.) based on morphological characters. Typical root-knot nematode infestation symptoms were observed on S. vulgaris roots (Figure 1). Identity of nematode females dissected from galls was confirmed as *M. luci* using isoenzyme electrophoresis as described previously by Strajnar et al. (2009).

REFERENCES

