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ABSTRACT 

 

In this study Amaranthus cruentus plants were grown under 

controlled optimal conditions (28/21 °C) for three months and 

then subjected to cold (14/7 °C) and hot (33/40 °C) 

temperatures. We investigated the influence of these 

temperature regimes on the metabolite profile of the leaves 

through analyses of data by TLC, HPLC and GC-MS 

spectrometry. The phytotoxic potential of a methanol-water 

(MW) and dichloromethane (DCM) extract from the aerial 

parts were examined through in vitro screening of germination 

and growth of lettuce and pepper. The optimal extracts 

displayed the highest diversity of secondary metabolites, and 

the highest total phenolics and flavonoids content. Through 

TLC and HPLC analysis the significantly lower phenolic 

content in the hot temperature treated samples was confirmed. 

A wide range of metabolites were detected in the DCM 

extracts through GC-MS analyses. The phytotoxicity of both 

the MW and DCM extracts were demonstrated, as germination 

and growth of pepper and lettuce were significantly inhibited, 

indicating the presence of more than one allelochemical 

compound which may affect the allelopathic activity of A. 

cruentus during changes in environmental temperatures. 

 

Key words: Amaranthus cruentus; temperature; stress; 

phytotoxcitiy; metabolites; phenolic compounds 

 

 

 

 

 

IZVLEČEK 

   
VPLIV TEMPERATURNEGA STRESA NA PROFIL IN 

FITOTOKSIČNOST SEKUNDARNIH METABOLITOV 

V LISTNEM IZVLEČKU ZRNATEGA ŠČIRA 

(Amaranthus cruentus L.). 

Rastline zrnatega ščira so bile za namene te raziskave gojene v 

nadzorovanih optimalnih temperaturnih razmerah tri mesece 

(28/21 °C) in nato izpostavljene hladu (14/7 °C) in vročini 

(33/40 °C). Preučevan je bil vpliv temperaturnih režimov na 

profil metabolitov v listih ščira z metodami kot so TLC, HPLC 

in GC-MS spektroskopija. Fitotoksični potencial metanolno-

vodnih (MW) in diklormetanskih (DCM) izvlečkov 

nadzemnih delov ščira je bil analizirana preko in vitro analize 

kalitve vrtne solate in paprike. Optimalni izvlečki so imeli 

največjo raznolikost sekundarnih metabolitov in največjo 

vsebnost celokupnih fenolov in flavonoidov. S TLC in HPLC 

analizo je bila potrjena značilno manjša vsebnost fenolov v 

vročinsko obdelanih vzorcih. Z GC-MS analizo je bil 

ugotovljen širok nabor metabolitov v diklormetanskih 

izvlečkih (DCM). Fitotoksičnost MW in DCM izvlečkov se je 

izrazila v značilno zmanjšani kalitvi in rasti solate in paprike, 

kar kaže na prisotnost več kot ene alelokemične spojine. To 

lahko posledično vpliva na alelopatsko aktivnost zrnatega 

ščira med spremembami temperature v okolju.  

 

Ključne besede: Amaranthus cruentus; temperatura; stres; 

fitotoksičnost; metaboliti; fenolne spojine 

 

1 INTRODUCTION 
 
Several studies documented on the increase of 

secondary compounds or changes in chemical profile 

within specimens of the same plant species growing 

under different or environmental stress conditions 

(Gobbo-Neto & Lopes, 2007; Ramakrishna & 

Ravishankar, 2011; Gouvea et al., 2012). The 

interaction between plants and their environment 

influence synthesis and accumulation of secondary 
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metabolites and their roles as a response to the 

environment. (Rhoads et al., 2006). The exposure to 

various environmental stresses can strengthen the 

allelopathic potential of many plants (Einhellig, 1987, 

1996; Gershenzon, 1984; Tang et al., 1995; Kobayashi, 

2004) and can affect allelopathy in at least three ways: 

1) the production of allelochemicals by the donor 

species, 2) their bioavailability and 3) modify the effect 

of an allelochemical on the target plant (Einhellig, 1996, 

Trezzi et al., 2016).  

 

Amaranth is one of the few multi-purpose crops which 

can supply grain as well as tasty leafy vegetables of 

high nutritional quality (Mensah et al., 2008; Maiyo et 

al., 2010; Nana et al., 2012; Alemayehu et al., 2015). 

The chemical constituents and medicinal value of 

amaranth have been well described in the literature 

(Stintzing et al., 2004; Steffensen et al., 2011; Kraujalis 

et al., 2013). Most of the reported compounds include: 

carotenoids, steroids (Maiyo et al., 2010; Oboh et al., 

2008; Bishop & Yokoto, 2001), terpenoids (Connick et 

al., 1989), ascorbic acid, betacyanins (Cai et al., 1998), 

α-spinasterol, spinoside, amaranthoside, amaracine 

(Shah, 2005), phenolic compounds (Kraujalis et al., 

2013) and saponins (Vincken et al., 2007). Some of 

these compounds are considered to be allelochemicals 

which are able to affect surrounding plants once 

released into the environment (Rice, 1984; Waller, 

1987). These phytotoxic compounds offer the 

opportunity to act as natural herbicides, since there is an 

increasing need for more cost-effective, safer, and more 

selective herbicides. 

 

This study evaluated the influence of temperature on 

plant secondary metabolite production of A. cruentus L. 

and whether the chemical-mediated interaction is 

involved in A. cruentus allelopathy. Thus, phytotoxcitiy 

of A. cruentus was evaluated with extracts of the 

different temperature treatments. 

 

 

2 MATERIALS AND METHODS 

 
2.1 Plant material 

Amaranthus cruentus ‘Anna’ seeds were planted in pots 

containing a soil-compost (80 : 22 v/v) mixture and 

grown at 28/21 °C; day/night temperatures in climate 

controlled chambers at The Department of Agriculture, 

University of the Free State as described by Allemann et 

al. (2017). Vegetable seeds used in this study were 

obtained from Starke Ayres: ‘California Wonder’ Sweet 

Pepper and ‘Great Lakes’ Lettuce.  

 

2.2 Crude extracts 

Methanol-water (70 : 30 v/v) and dichloromethane 

(DCM) were used as solvents. Ten grams of the 

powdered A. cruentus leaf material (oven dried at 40 

°C) was extracted twice by shaking overnight in the 

different solvents (1 : 20 w/v). The pooled extracts were 

dried and kept at 4 °C until further analyses. 

 

2.3 Allelopathy determination 

A combination of the ‘sandwich method’ of Fujii et al. 

(2003) and Hill et al. (2007) was used to determine the 

in vitro phytotoxicity of the crude leaf extracts from the 

different temperature treatments of A. cruentus on the 

vegetable seeds. For this method 5 and 20 mg of each 

extract was dissolved in 1 ml of their own solvent, and 1 

ml pipetted onto a filter paper. The filter papers were 

allowed to dry then placed on the bottom layer of agar 

resulting in 0.5 or 2 mg ml
-1 

extract per well. Controls 

contain only the solvents on filter paper. 

 

Lettuce (Lactuca sativa L.) and pepper (Capsicum 

annuum L.) seeds were surface sterilised as described 

by Allemann et al. (2017) and each of the experiments 

was done in triplicate and presented as the mean of the 

replicates.  

 

2.4 Total phenolic and flavonoid content 

Total phenolic content was evaluated in the methanolic 

extract, using the Folin-Ciocalteu method as reported by 

Singleton & Rossi (1965). The absorption was measured 

at 550 nm and the content in phenolics was expressed as 

mg galllic acid equivalents (GAE) of dry mass extract. 

Total flavonoid content was determined as reported by 

Zhishen et al. (1999). The absorption was measured at 

510 nm and the content in flavonoids was expressed as 

mg quercetin equivalents (QE) of dry mass extract. 

 

2.5 Thin Layer Chromatography 

Thin layer chromatography (TLC) was carried out using 

silica gel 60 F450–aluminium backed pre-coated plates. 

Extracts (50 mg ml
-1

) were dissolved in their 

appropriate extraction solvents and 10 μl applied to the 

TLC. The mobile phase for development of the MW 

extracts was chloroform-methanol-water-acetic acid 

(65:35:5:1), while for the DCM extracts, plates were 

developed in toluene-ethyl acetate (93:7). Compounds 

resolved on the plate were visualized using ultraviolet 

light (UV) at 365 nm and 254 nm, ninhydrin (Pifrung, 

2006), p-anisaldehyde-sulphuric/acetic acid, 5 % ferric 

chloride and dragendorf reagents, prepared according to 



Impact of temperature stress on secondary metabolite profile and phytotoxicity of Amaranthus cruentus L. leaf extracts 

 

 

Acta agriculturae Slovenica, 111 - 3, december 2018    611 

the standard methods described by Wagner & Bladt 

(1996). 

 

2.6 High Pressure Liquid Chromatography 

The MW extracts (20 mg ml
-1

) were separated and 

identified through high pressure liquid chromatography 

(HPLC) by comparing the retention times to standard 

phenolic compounds. Standards were prepared in 

methanol (3 mg ml
-1

) and absorption measured between 

200 and 400 nm. Ten micro litre of extracts and 2 µl of 

standards were injected while the flow rate was kept at 1 

ml min
-1

. A Shimadzu instrument with a Photo Diode 

Array Detector (PDA) and an elution procedure as 

described by Vidović et al. (2015) with a C18 column 

(Phenomenex C18, 250mm × 4.6mm, 5µm diameter), 

was used to achieve acceptable separation of all 

compounds. The mobile phase consisted of: A, 

acetonitrile and B, a mixture of acetic acid- acetonitrile-

phosphoric acid-water (10:5:0.1:84:9, by vol.). 

 

2.7 GC-MS analysis 

The DCM extracts (10 mg) were dissolved in 1 ml 

hexane. Analyses was done through GC-MS using a 

Shimadzu GC-MS QP-2010 gas chromatography 

equipped with a DB-5 MS column (30 m length × 0.32 

mm diameter × 0.25 µm film thickness) and injecting 1 

µl of sample. The GC operating conditions were the 

following: 5 min at 60 °C, then gradually increased to 

280 °C at a rate of 2 °C min
-1

, and held for 10 min. 

Helium was used as the carrier gas (1.5 ml min
-1

 flow 

rate). Spectra analysis was conducted using the library 

“National Institute of Standard and Technology (NIST) 

version 5.0. 

 

2.8 Statistical analysis 

The experiments were carried out adopting a completely 

randomized design with three replications. The results 

were expressed as means with least significant 

difference (LSD). Analysis of variance (ANOVA) was 

performed using SAS 9.3 (Institute Inc., Cary, NC, 

USA, 2008) statistical programme for data and Tukey-

Kramer’s LSD procedure for comparison of means. 

Significance of differences compared to the control 

groups was determined using the t-test (Steel & Torrie, 

1980). 

 

 

3 RESULTS AND DISCUSSION 

 
3.1 Metabolites 

Comparison of the compounds in the MW and DCM 

leaf extracts of the different temperature treatments of 

A. cruentus plants, are illustrated by TLC in Figure 1. It 

is clear that temperature played an obvious role in the 

production of secondary compounds, as clear 

differences in compounds between the treatments were 

visible in both the polar and non-polar extracts (Fig. 1A 

& B). Different compounds with varying Rf values were 

visible when spraying the TLC’s with p-anisaldehyde-

sulphuric/acetic acid reagent. Colours of compounds 

range from green, yellow, pink, blue and purple with 

different Rf values for the polar and non-polar extracts. 

The diverse coloured compounds with varying Rf values 

visible in both polar and non-polar extracts on TLC 

(Fig. 1) may indicate many different compounds, 

including terpenes, saponins, sugars and flavonoids 

amongst others (Wagner & Bladt 1996).  

 

In the optimal treatment of the MW extract, 11 

compounds were noted, compared to 8 and 5 in the cold 

and hot treated samples respectively. Prominent spots, 

including a dark purple (Rf = 0.055), a blue-purple (Rf = 

0.49) and a light blue spot (Rf = 0.6) were only present 

in the optimal extract (Fig. 1A). From these results one 

can deduct that the stress temperatures, particularly the 

hot, inhibited the biosynthesis of some of the more polar 

compounds. 

 

Differences were also visible in the non-polar samples 

(Fig. 2B), with a noticeable blue coloured compound 

visible at Rf = 0.83, solely in the hot treatment DCM 

extract (Fig 1B). Less green pigment, probably 

chlorophyll was also observed in the hot treatment 

extract, indicating the effect the hot treatment had on 

photosynthesis. 

 

Several studies were conducted on the impact of 

increased temperatures on secondary metabolite 

production of plants (Morrison & Lawlor, 1999). 

Phenolic compounds are important and common plant 

allelochemicals in the ecosystem and the main phenolic 

compounds are water soluble (Li et al., 2010). Kraujalis 

et al. (2013) reported on the antioxidant properties and 

phytochemical composition of amaranth extracts 

isolated by acetone and methanol-water from plant 

leaves, flowers, stems and seeds. They found that the 

methanol-water extract of the leaves possessed the 

highest antioxidant activities and various phenolic 

compounds and flavonoids e.g. rutin, nicotiflorin, 

isoquercitrin, 4-hydroxybenzoic and p-coumaric acids 

were identified as major constituents. In the review 

article by Mroczek (2015) it is reported that saponins 

were isolated from a diversity of Amaranthaceae genera 

and species.  
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Figure 1: Qualitative TLC profiles of the optimal, cold and hot treated A. cruentus MW (A) and DCM (B) leaf 

extracts. Detection by p-anisaldehyde reagent 

 

In this study, the total phenolic and flavonoid content 

significantly declined in A. cruentus plants exposed to 

hot temperatures compared to plants grown at the 

optimal temperature (Table 1). The decrease in total 

phenolic and flavonoid content are in contrast with 

findings of many authors who reported an increase in 

production of phytotoxic phenolic compounds in plant 

tissues exposed to high temperatures and solar radiation 

(Koeppe et al., 1969; Wender, 1970; Einhelig & 

Eckrich, 1984). Rudikovskaya et al. (2008), however 

reported that low growth temperature decreased the 

content of some phenolic compounds in pea seedling 

roots and according to Król et al. (2014), long-term 

drought stress caused a decrease in particular 

components of secondary metabolism in the leaves and 

roots of grapevine. It seems therefore that one cannot 

expect generalized patterns of phenolic compounds in 

stress situations. 

 

Table 1: Total phenolic and flavonoid compounds in temperature stressed amaranth leaf material 

Treatment 
Total phenolic content (mg GAE 

g D.M
-1

.) 

Total flavonoid content (mg QE g 

D.M
-1

.) 

Cold 12.0 b 5.4 a 

Optimal 18.8 a 5.6 a 

Hot 10.1 b 4.1 b 

 

 

 

 

   Opt   Cold   Hot   Baseline 

Frontline 
A B 

Opt      Cold    Hot  

Rf = 0.055 

Rf = 0.49 

Rf = 0.60 

Rf = 0.83 
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Analyses by HPLC confirmed the decrease in phenolic compounds in the temperature stressed plants (Fig 2). 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of HPLC-PDA chromatograms of optimal (A), cold (B) and hot (C) temperature treated A. 

cruentus methanol-water leaf extracts. 1 = Catechin; 2 = Rutin; 3 = Quercetin 

 

 

Flavonoids are not usually seen as allelopathic 

compounds but they have other roles in plants such as 

attractants to pollinators, protection against ultraviolet 

light (Li et al., 1993) and as an anti-inflammatory, anti-

allergic and anti-viral activities (Miller, 1996). Some 

flavonoids do however have allelopathic properties such 

as quercetin (Inderjit & Dakshini, 1995), catechin (Bais 

& Kaushik, 2010; Chobot et al., 2009) and rutin (Basile 

et al., 2000), which has been found in both A. hybridus 

and A. cruentus. From our HPLC results, catechin and 

rutin were identified in the optimal and cold treated 

amaranth MW leaf litter extracts (Fig 2A & B), while a 

small amount of quercetin was detected in only the cold 

treated sample (Fig 2B). The heat treated sample 

contained a reduced amount of unidentified compounds 

(Fig 2C), indicating the role temperature play on the 

biosynthesis of flavonoids and the possible consequence 

on allelopathy. 

 

The influence of temperature on the expressed 

compounds in the different DCM extracts were clearly 

visible after analyses through gas chromatography and 

mass spectrometry (GC-MS). Major compounds made 

up a total composition of 75.69 % (9 compounds), 

90.44 % (7 compounds) and 91.89 % (9 compounds), of 

the optimal, cold and heat treated samples respectively 

(Table 2). Neophytadiene and hexadecanoic acid were 

the only compounds present in all three extracts, 

although the concentrations of these compounds varied 

substantially between the treatments (Table 2). The 

highest concentration of neophytadiene (27.53 %) was 

found in the cold treated sample, while hexadecanoic 

acid (13.52 %) was maximum in the heat treatment 

extract. Squalene, trans-phytol and the phytosterol, 

stigmasta-7,22-dien-3-ol were present in only cold and 

heat treated samples. 

 

Gamel et al. (2007) found high squalene concentrations 

in oil fractions of A. caudatus L. and A. cruentus, while 

Shah (2005) reported on the presence of stigmasta-7,22-

dien-3-ol (α-spinasterol) in A. spinosus L.. According to 

Szakiel et al. (2010), lower soil temperatures triggered 

an increase in levels of steroidal furostanol and 

spirostanol saponins. 
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Table 2: GC-MS results of compounds present in optimal, cold and hot temperature treated DCM leaf extracts of A. 

cruentus 

Retention 

time (min) 
Compound name* 

Optimal 

area % 

Cold 

area % 

Hot 

area % 

63.315 16-Heptadecenal 13.22 - - 

64.054 Neophytadiene 9.03 30.70 4.44 

65.296 
3,7,11,15-Tetramethyl-2-

hexadecen-1-ol 
- 5.19 3.72 

66.193 trans-Phytol - 10.04 6.01 

70.621 Hexadecanoic acid (Palmitic acid) 11.01 3.29 13.52 

77.243 
2-Hexadecen-1-ol, 3,7,11,15-

tetramethyl 
- - 7.82 

78.458 
9,12,15-Octadecatrienoic acid (α-

Linolenic acid) 
- 27.40 29.68 

79.695 Octadecanoic acid (Stearic acid) - - 2.30 

81.156 
Tetrahydrofurano[6a,7a-b]-5-oxa-8-

thiaphenanthrene 
9.86 - - 

97.733 Hexahydrothunbergol 7.07 - - 

102.751 bis-Naphthylfuran 5.47 - - 

103.841 Methyl ester of decyclotrenudine 5.02 - - 

103.992 (-)-18-Noramborx 4.84 - - 

104.067 Benzyl methyl ether 10.17 - - 

104.920 Squalene - 3.73 6.22 

121.002 
Stigmasta-7,22-dien-3-ol (α-

Spinasterol) 
- 10.09 12.36 

Total  75.69 90.44 91.89 

Area (%) of compound = height of peak x width of peak at ½height ≤ x Total area
-1 

* Identification by Library: NIST 05. LIB 

 

3.2 Phytotoxcitiy 

Germination  

Phytotoxic activity of A. cruentus extracts may be 

ascribed to a wide range of biologically active 

phytochemicals such as phenolic acids, flavonoids and 

fatty acids which are known for their phytotoxic and 

allelochemical activities. When these compounds are 

released into the soil by leaf litter decomposition there 

may be a change in both the physical and chemical 

properties and therefore affecting the organization and 

growth of plant communities. At different 

concentrations both the MW and DCM extracts of the 

different temperature treatments, significantly inhibited 

germination of both lettuce and pepper (LSD(T≤0.05) = 

1.88) (Table 3). The polar MW extract was more 

effective in lowering germination percentages in both 

pepper and lettuce than the non-polar DCM extract 

(Table 3). 
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Table 3: Germination percentage of pepper and lettuce seeds exposed to increasing concentrations of MeOH-H2O  

Extract 

[mg ml
-1

] 

Germination % of pepper  Extract 

[mg ml
-1

] 

Germination % of lettuce 

temperature treatment  temperature treatment 

MW Optimal Cold Hot Ave  MW Optimal Cold Hot Ave 

0 100 100 100 100  0 100 100 100 100 

0.5 29 24 29 27  0.5 24 29 31 28 

2 29 24 33 28  2 24 24 36 28 

Ave 52 49 54   Ave 49 51 56  

DCM      DCM     

0 100 100 100 100  0 100 100 100 100 

0.5 49 29 56 44  0.5 69 67 42 59 

2 40 22 47 36  2 42 24 36 34 

Ave 63 50 68   Ave 70 64 59  

LSD(T ≤ 0.05) = 1.88. n = 96 

 

Growth  

Both the hypocotyl and seminal root were significantly 

inhibited when exposed to extracts of all the 

temperature treatments, however the cold stress 

treatment was the most detrimental (Table 4 & 5). The 

results also confirmed that root elongation was more 

sensitive to allelochemicals than stem (hypocotyl) 

elongation in both species. Furthermore, both polar and 

non-polar extracts, at 0.5 and 2 mg ml
-1

, significantly 

reduced the growth of lettuce (Table 4) and pepper 

(Table 5). Allelopathy influences plant succession 

through root exudation, leaching and volatilization 

when the plant dies and starts to decompose (Rice 1984; 

Weston 2005; Minorsky 2002; Bertin et al. 2003). The 

most frequently reported morphological effects from 

allelochemicals on sensitive plants is the inhibition or 

retarded seed germination and retarded development of 

shoots and roots (Ghafarbi et al. 2012). It has been cited 

in literature that allelopathy was involved in many 

natural and manipulated ecosystems and that they play a 

role in the evolution of different plant communities 

(Ding et al., 2007). Abiotic stresses can lead to 

morphological, physiological, biochemical and 

molecular changes within the plants, and therefore has 

an impact on plant growth (Wang et al., 2003). Climate 

change and temperature play a role in the synthesis of 

allelochemicals, which can affect the growth processes 

of neighbouring plants (Li et al., 2010). Results by 

Amini (2009, 2012), proved that root exudates of A. 

retroflexus had inhibitory effects on shoot length of both 

crop (wheat) and vegetable (common bean) plants. 

Aqueous extracts from the leaves, roots and stems of A. 

retroflexus L. had inhibitory effects on the hypocotyl 

growth of maize (Konstantinović et al., 2014). Dhole et 

al. (2013) noticed that seed germination and seedling 

growth of maize were inhibited when using aqueous 

extracts from the root, stems and leaves of A. tricolor 

L.. 

 

Phenolic compounds take part in the regulation of seed 

germination and work together in regulating the growth 

of plants. The role of several phenolic compounds e.g. 

lignin, salicylic acid, flavonoids and phytoalexins play 

important roles in plant resistance, taking part in 

defence responses during biotic and abiotic stress 

(Kulbat, 2016). It is therefore possible that the reduction 

in phenolic compounds caused by temperature stress, 

could play a role in the germination and growth of 

lettuce and pepper seeds. Furthermore, it is clear from 

both literature and our results, that concentration plays a 

major role in the severity of allelopathic effects on 

different plants (Qasem, 1995; Obaid & Qasem, 2005). 
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Table 4: Hypocotyl and seminal root lengths of lettuce seeds exposed to increasing concentrations of MeOH-H2O 

and DCM leaf extracts of A. cruentus grown at optimal, cold and hot temperatures 

Extract 

[mg ml
-1

] 
Hypocotyl length of Lettuce (mm) Seminal root length of Lettuce (mm) 

MeOH-

H2O 

Temperature treatment Temperature treatment 

Optimal Cold Hot Ave Optimal Cold Hot Ave 

0 28.77±9.07 28.77±9.07 28.77±9.07 28.77 a 26.31±11.2 26.31±11.2 26.31±11.2 26.31 a 

0.5 26.77±16.5 29.15±17.8 31.69±11.4 29.03 a 17.54±12.5 13.23±7.25 15.08±6.45 15.28 b 

2 20.62±12.8 6.31±9.46 13.08±7.99 13.34 b 8±7.43 3.15±3.31 3.85±2.44 5 c 

Ave 25.39 21.41 24.51 
 

17.28 14.23 15.08  

LSD(T≤0.05) T = ns C = .23 T×C =  
 

T = ns C = .39 T×C = ns  

DCM 
    

    

0 35.48±11.7 35.48±11.7 35.48±11.7 35.48 a 27.63±12.4 27.63±12.1 27.62±11.8 27.63 a 

0.5 28.85±6.27 17.31±9.29 9.77±4.64 18.64 b 19.62±5.04 15.77±9.49 8±4.16 14.46 b 

2 26.77±7.93 7.08±8.75 25.38±7.79 19.74 b 14.08±5.99 9.08±8.84 16.69±6.71 13.28 b 

Ave 29.79 20.54 23.54 
 

19.49 17.82 17.44  

LSD(T ≤ 

0.05) 
T = 4.89 C = 4.89 

T×C = 

4.89  
T = ns C = .66 

T×C = 

4.66 
 

Different letters along the column indicate significant differences at T ≤ 0.05 (Tukey test). Significant differences 

within each vegetable; n = 13. 

 

Table 5: Hypocotyl and seminal root lengths of pepper seeds exposed to increasing concentrations of MeOH-H2O 

and DCM leaf extracts of A. cruentus grown at optimal, cold and hot temperatures 

Extract 

[mg ml
-1

] 
Hypocotyl length of pepper (mm) Seminal root length of pepper (mm) 

MeOH-

H2O 

Temperature treatment Temperature treatment 

Optimal Cold Hot Ave Optimal Cold Hot Ave 

0 20.23±15.3 20.23±15.3 20.23±15.3 20.23 a 13.92±5.02 13.92±5.02 13.92±5.02 13.92 a 

0.5 2.69±4.55 5.62±3.91 11.31±7.78 6.54 b 1.15±2.54 3.31±3.28 9.85±8.71 4.77 b 

2 1.08±1.80 3.46±2.26 5.15±1.99 3.23 b 0.46±0.88 1.08±0.76 3.46±4.74 1.67 c 

Ave 8 9.77 12.23 
 

5.18 6.10 9.08  

LSD(T≤0.05) T=ns C=4.35 T×C=ns 
 

T=2.29 C=2.29 T×C=2.29  

DCM 
    

    

0 16.08±6.21 16.08±6.21 16.08±6.21 16.08 a 24.38±11.4 24.38±11.4 24.38±11.4 24.38 a 

0.5 6.31±2.56 4.31±5.75 2.46±1.61 4.36 b 12.77±3.68 2.85±3.74 1.92±0.86 5.85 b 

2 3.69±2.66 4.31±5.02 8.77±7.33 5.59 b 5±5.74 6.46±8.90 5.85±6.01 5.77 b 

Ave 8.69 8.23 9.10 
 

14.05 11.23 10.72  

LSD(T ≤ 

0.05) 
T = ns C = 2.78 

T×C = 

2.78  
T = ns C = 3.87 

T×C = 

3.87 
 

Different letters along the column indicate significant differences at T ≤ 0.05 (Tukey test). Significant differences 

within each vegetable; n = 13. 

 

Many studies have been done on allelopathy of the polar 

extracts of amaranth, but no information is available on 

the non-polar compounds. This is the first report on the 

in vitro phytotoxicity of a DCM extract of grain 

amaranth. The characteristics of allelochemicals are 

important and play a significant role in their fate in the 

environment. For example, the mobility of compounds 

within the soil are influenced by their water solubility; 

the vapour pressure can impact their volatilization and 

their chemical structure can affect their affinity with the 
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soil surface (Souza Filho & Alves 2002). The outcome 

of all these complex interactions results in compounds 

with allelopathic properties which can be of potential 

agronomic use. 

 

 

4 CONCLUSION 
 

Temperature influenced the chemical composition of A. 

cruentus and in vitro bioassays proved the negative 

impact of the extracts on germination and growth of 

vegetables. This demonstrated that the environment for 

the cultivation of A. cruentus is important and that more 

than one compound were responsible for allelopathy, 

thus both polar and non-polar compounds were 

involved. Furthermore, with increased concentrations of 

extracts a decrease in germination and seedling 

development occurred. Consequently, if more plant 

residues are left behind in the soil, the growth of the 

next crop will often be affected with a subsequent 

decline in yield. It was also clear that vegetables 

displayed diversity in reaction towards the temperature 

treatments and type of extract. This information proves 

that a holistic understanding of the influence of abiotic 

environmental factors on the production of metabolites 

in various plant parts are of importance. The release of 

potentially phytotoxic compounds from A. cruentus leaf 

litter into soil deserves further investigation as well as 

the purification of extracts to determine unidentified 

natural compounds with herbicidal activity. 
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