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Analyzing cereal and grain legumes (pulses) yields patterns 
in the forest and forest-steppe zones of Ukraine using geo-
graphically weighted principal components analysis

Abstract: This paper aims to explore spatial heterogeneity 
present in the crop yields data collected from 170 administra-
tive districts in the forest and forest-steppe zones of Ukraine for 
27 years using the PCA and GWPCA methods. As a result of 
the principal component analysis of cereal and grain legumes 
(pulses) yields variability seven principal components were de-
termined which together explain 66.8  % of the overall yields 
variability. The global PCA revealed the presence of dynamic 
processes of the cereal and grain legumes yields variation 
which have the oscillatory nature with different frequencies. 
We associate oscillatory processes of the varying frequency 
with causes of a different nature. The oscillating processes 
with a period of ten years or more may be of climatic origin. 
The oscillatory process with the longest period (13 years) is 
characteristic for the principal component 1, which explains 
the largest part of cereal and grain legumes yields variability 
(22.6  %). It is possible to assume that among agroecological 
factors climate change mostly affects crop productivity. The 
cluster analysis of administrative districts was conducted based 
on the cereal and leguminous yield dynamics. The clusters are 
geographically defined administrative districts that together 
forming spatially connected areas, which we identified as agro-
ecological zones. 

Key words: yield; cereals; leguminous crops; spatial and 
temporal variability; geographically weighted principal compo-
nents analysis

Analiza vzorcev pridelkov žit in zrnatih stročnic na obmo-
čju gozda in lesostepe Ukrajine z geografsko tehtano analizo 
glavnih komponent 

Izvleček: Namen prispevka je bil preučiti prostorsko he-
terogenost pridelkov poljščin iz podatkov zbranih iz 170 admi-
nistrativnih okrožij na območju gozda in lesostepe Ukrajine v 
obdobju zadnjih 27 let z uporabo PCA in GWPCA metod. Re-
zultat analize spremenljivosti pridelkov žit in zrnatih stročnic 
z analizo glavnih komponent je bila določitev sedmih glavnih 
component, ki so skupno razložile 66,8 % celokupne variabil-
nosti pridelkov. Globalna analiza glavnih component je odkrila 
prisotnost dinamičnih procesov v spremenljivosti pridelkov žit 
in zrnatih stročnic, ki nihajo z različnimi frekvencami. Osci-
latorne procese z različnimi frekvencami povezujemo z različ-
nimi vzroki. Nihajoči procesi s periodo desetih ali več let so 
lahko povezanimi s podnebjem. Oscilatorni proces z najdalšo 
period (13 let) je značilen za prvo glavno komponento, ki ra-
zloži največji delež nihanja pridelkov žit in zrnatih stročnic 
(22,6 %). Mogoče je zaključiti, da med agroekološkimi dejav-
niki sprememba podnebja najbolj vpliva na pridelek poljščin. 
Klasterska analiza administrativnih območij je bila izvedena na 
osnovi dinamike spremeljivosti pridelkov žit in zrnatih stroč-
nic. Grozdi so zemljepisno omejena administrativna območja, 
ki tvorijo skupaj prostorsko povezana območja, ki so označena 
kot agroekološke cone. 

Ključne besede: pridelek; žita; zrnate stročnice; prostor-
ska in časovna spremenljivost; analiza geografsko tehtanih 
glavnih komponent
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1	 INTRODUCTION

Agricultural producers have known for many years 
that temporal and spatial variations in crop yields are a 
reality of farming. Year-to-year fluctuations in crop per-
formance can be caused by seasonal differences in factors 
such as growing season conditions, differences in weed, 
insect and disease pressures and possibly the appropriate-
ness of management decisions (Lauzon et al., 2005; Frieler 
et al., 2017). 

Crop yields are frequently heterogeneous across 
space and time. Spatiotemporal variation can be broken 
down into its spatial and temporal components (Ham-
mond & Kolasa, 2014). Synchrony and persistence are im-
portant components of spatiotemporal variability. When 
the same crop rises or declines in the same year in each of 
the two regions of the country, they are in synchrony. Per-
sistence on the other hand refers to consistent differences 
in mean yield between two regions or other spatial units. 
Spatial patterns are diagnostic when they are used to un-
cover hidden mechanisms in the landscape, and predictive 
when they indicate the likely future behavior of a process 
(Hammond & Kolasa, 2014; Kong et al., 2018).

There have been several approaches to explore long-
term trends in historical crop yield data based on process-
based or statistical models (Lobell et al., 2013; Frieler et al., 
2017). In this study, we use a collection of local (non-sta-
tionary) statistical models, termed geographically weight-
ed principal components analysis (GWPCA). 

GWPCA is a localized version of PCA that is an 
exploratory tool for investigating spatial heterogeneity in 
the structure of multivariate data. It not only provides a 
useful investigative tool, but also lends itself to many uses 
of PCA at a localised scale (Harris et al., 2011).

Principle component analysis (PCA) is a statistical 
method widely used in exploratory data analysis (Pear-
son, 1901). This non-parametric method compresses the 
dimension of a dataset and thus can reveal some simplified 
structures hidden in the dataset (Liu et al., 2012). Principal 
component analysis has been applied by various research 
area with the aim of exploring and characterizing the re-
lationships between regionalized variables and related en-
vironmental factors, and to quantify the spatial variability 
pattern of these variables (Kumar et al., 2012; Li & Huang, 
2008). In an ecological setting, common applications of 
PCA are to environmental data sets e.g., the soils biogeo-
chemistry data (Kaspari & Yanoviak, 2009), although via 
a suitable transform, PCA can also be applied to species 
abundance data (Legendre & Gallagher, 2001; Harris et al., 
2015).

PCA analysis can be easily expanded using geograph-
ically weighted correlation coefficients where the weights 
are determined with respect to each observation location 

allowing a separate PCA (geographically weighted PCA, 
GWPCA) to be conducted for each sampling location 
(Kumar et al., 2012). Hence, a GWPCA investigates how 
outputs from a PCA vary spatially (Comber et al., 2016). 
Spatial changes in data dimensionality and multivariate 
structure can be explored via maps of the GWPCA outputs 
(Fotheringham et al., 2002). GWPCA can also be used to 
detect multivariate spatial anomalies (Harris et al., 2015).

In the published literature, GWPCA has been ex-
tensively applied for analyzing multivariate population 
characteristics (Lloyd, 2010), social structure (Harris et al., 
2011), soil characteristics (Kumar et al., 2012) and fresh-
water chemistry data (Harris et al., 2015; Li et al., 2015). 
However, GWPCA has not been applied to assess the 
spatial variability of crop yield in agricultural landscapes 
inherently with spatially heterogeneous. To fill in the gap, 
this paper aims to explore such spatial heterogeneity pres-
ent in the crop yields data collected from 170 administra-
tive districts in forest and forest-prairie zone of Ukraine 
for 27 years using the GWPCA method. 

The maps produced from GWPCA provide quantita-
tive evidence and spatial details for supporting spatial land 
management and regional development strategy and help 
identify the spatial differentiation status of the regional ag-
ricultural development.

2	 MATERIALS AND METHODS

Crop data were obtained from the State Statistics 
Service of Ukraine. Specifically, the organized data set 
included the average per year yields of the cereal and grain 
legumes (pulses) for 7 regions of Ukraine, which include 
170 administrative districts over 27 years (1991– 2017). 
The cereal crops includes wheat (winter and spring), rye 
(winter and spring), barley (winter and spring), spring 
oats, buckwheat and millet. Grain legumes are beans and 
peas. The State Statistics Service of Ukraine provides in-
formation on the yield of cereals and grain legumes in one 
category. We considered the yield of cereal and grain le-
gumes crops as a marker of the productive potential of the 
agrolandscape.

The time series of crop yields for each administrative 
district was divided into two components: total trend and 
trend residual. The total trend was explained by the de-
pendence of the yield from time. As an analytic form of 
the trend we chose the fourth-degree polynomial (Zyma-
roieva et al., 2019b; Zymaroieva et al., 2020a). The residu-
als of the corresponding regression models that describe 
the trends consist of the random component (noise) 
and, probably, the regular one that cannot be explained 
by the selected trend model. These two components are 
distinguished by their properties: the random component 
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is independent for different points of space, and the regular 
component must be correlated to all or some points in 
space (administrative districts). We used the principal 
components analysis for the residuals in order to isolate 
the regular component of trend models. The presence of 
the principal components, whose eigenvalues more than 
one unit, indicates the existence of correlation in crop 
yields variation (Zymaroieva et al., 2019a).

How data is suited for the principal component 
analysis was estimated by Kaiser-Meyer-Olkin (KMO) 
test (Kaiser, 1974). Calculations were performed using 
library REdaS (Hatzinger et al., 2014) in the environ-
ment for statistical computing R (R Core Team, 2017). 
PCA was performed using library stats (R Core Team, 
2017). The GWPCA method is implemented using the 
GWmodel R package (http://cran.rstudio.com/) (Zhukov 
& Ponomarenko, 2018). The spatial database was created 
in ArcGIS 10.0. The spatial autocorrelation, I-Moran’s sta-
tistics (Moran, 1950), was used to calculate the global co-
efficient. I-Moran’s is a measure of autocorrelation similar 
to the Pearson’s correlation statistics, and both statistics 
range from +1.0 meaning strong positive spatial autocor-
relation, to 0 meaning a random pattern, to –1.0 indicating 
strong negative spatial autocorrelation (Iqbal et al., 2005). 
Heteroscedastic testing becomes very challenging for 
high-dimensional regressions. Heteroscedasticity implies 
that the variance of the disturbance term is not constant 
over the data range. Koenker-Bassett test evaluates 
heteroscedasticity by comparing different quantile or 
expectile estimates (Koenker & Bassett, 1978). The global 
Moran’s statistics were calculated using Geoda095i (http://
www.geoda.uiuc.edu/) (Anselin et al., 2005).

3	 RESULTS

The residuals of the corresponding regression models 
have a complex nature. Definitely, there is a random noise 

associated with objective errors in the source data. Also, 
in the regression residuals, we can expect a component 
that is associated with a regular variation that may have an 
ecological nature (Zymaroieva et al., 2019a). 

The dissimilar magnitude between these residuals for 
administrative areas may lead to biased results from PCA 
as the variables with the highest sample variances tend 
to be emphasized in the first few principal components. 
Hence, all the selected variables need to be standardized 
by subtracting its mean from that variable and dividing it 
by its standard deviation. Such data standardization makes 
each transformed variable have equal importance in the 
subsequent analysis (Li et al., 2015).

There is another question to be answered before im-
plementing a PCA analysis: is the sample size large enough 
for the statistical analysis? Is there a certain redundancy 
between the variables? We studied crop yields in 170 
administrative districts for 27 variables (years). The Kai-
ser-Meyer-Olkin (KMO) index is run for the overall data 
set to detect sampling adequacy. As the KMO value is 0.65, 
according to the Kaiser empirical rule (Kaiser, 1974), the 
study data should be considered mediocre for the PCA. 

The PCA of the residuals of the regression model 
allowed establishing that the number of statistically 
probable principal components is 7 according to the Horn 
procedure (Horn, 1965). The first seven components with 
eigenvalues larger than unity totally explain up to 66.8 % 
of variation in the regional cereal yield. 

The variables used in the PCA are the ordinal 
quantities – the years, so the loadings of the principal 
components on the variables can be represented as 
dynamic changes in time (Fig. 1). This form of presentation 
allows interpreting meaningfully the installed principal 
components as oscillation processes with the different 
frequency. Thus, principal component 1 explains 22,60 % 
of the total variability of the grain and grain legumes 
yields. It is characterized by a predominant oscillation 
process within the period of 13 years. The variation of 

Principal 
components Adjusted eigenvalues* Unadjusted eigenvalues Estimated bias Proportion of variance 

Standard 
deviation 

1 5.28 6.10 0.82 22.60 2.46
2 2.46 3.15 0.69 11.68 1.77
3 2.07 2.67 0.59 9.88 1.63
4 1.23 1.74 0.51 6.45 1.32
5 1.14 1.58 0.44 5.84 1.25
6 1.06 1.43 0.37 5.31 1.19
7 1.04 1.35 0.31 4.99 1.16

Table 1: Summary of global PCA

Legend: * – by Horn’s parallel analysis
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the principal component 1 is clearly spatially determined 
(I-Morana 0.29, p = 0.001). The zones with higher values 
of the principal component 1 form clusters in some areas 
of the east of the studied region, as well as in the south, 
southwest and west. The zone with the lower values of 
the principal component 1 forms a clear cluster in the 
southwestern direction from the center of the region 
(Fig. 2).

Principal component 2 explains 11.68  % of the 
variability of the space of signs and its fluctuation has 
characteristic period of 6-7 years. This component 
demonstrates spatially regular patterns of variation 
(I-Moran 0.48, p = 0.001). Clusters with higher values of 
the principal component 2 are located on the north and 
northeast, and with the lower ones – the east and south 
(Fig. 2). 

Principal component 3 explains 9.88 % of the total 
variability of the cereal and grain legumes yields and it 
has characteristic fluctuations with a period of 8-9 years. 
This component has a high level of spatial variability (I-
Moran 0.51, p = 0.001). Clusters with higher values of the 
principal component 3 are common for the northwest 
and southeast, and with lower values for the east and 
southwest (Fig.2).

Principal component 4 explains 6.45  % of the 

variability of the space of signs. For its fluctuations in 
time, the period of 8-9 years is also the most characteristic 
(phase shift between components 3 and 4 is 4 years) (Fig. 
1). The spatial patterns of this component are statistically 
significant (I-Morana 0.29, p = 0.001). The cluster 
with the higher values of the principal component 4 is 
characteristic for the center and north of the region, and 
with lowered values – for the east (Fig.2).

Principal component 5 describes 5.84  % of the 
variability of the feature space and is characterized by 
fluctuations with a period of 4 years. The I-Moran’s index 
value for the PC5 is 0.39 (р = 0.001), which reveals a 
statistically positive spatial autocorrelation and as such 
demonstrates a highly clustering spatial pattern. Clusters 
with higher values of the principal component 5 are 
concentrated in the west, and with the lower ones in the 
central part of the region (Fig.2).

Principal component 6 explains 5.31 % of variability 
and represents the most high-frequency component of 
the grain yield dynamics with the most typical fluctuation 
period of 3 years. The variability of this component is 
characterized by the spatial component (I-Moran 0.19, 
p = 0.001). The zone with the higher scores of the main 
component 6 forms a clearly defined cluster in the south 
of the region (Fig. 2). 

Figure 1: The principal components loadings to the variables 1 – 7 
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Principal component 7 describes 4.99  % of the 
variability of the feature space and varies in time within a 
period of about 5 years. The I-Moran statistic value (0.27, 
p = 0.001) indicates statistically positive autocorrelation 
and, thus, demonstrates the presence of a significantly 
clustered spatial pattern. Clusters with higher scores 
of the principal component 7 are concentrated in the 
southwest, and with the lower ones, in two clusters in the 
north of the region (Fig.2).

3.1	 GEOGRAPHICALLY WEIGHTED PRINCIPAL 
COMPONENT ANALYSIS

Monte Carlo test was conducted to examine whether 
data matrix eigenvalues are spatially varying. As shown 
in Figure 3, the p-value for testing the local eigenvalues 
of standard deviations from GWPCA is 0.05. This value 
demonstrates that the spatial invariant hypothesis of lo-
cal eigenvalues is significantly rejected at the 95 % level; 
or rather, there is a certain degree of spatial non-station-
arity present in the data of regional cereal yield.

A key feature in GWPCA is finding the scale 
at which each localized PCA should operate; that is, 
choosing the kernel bandwidth. Before searching for an 

optimal bandwidth, it is necessary to decide a prior upon 
the number of components to retain (Harris et al., 2015; 
Gollini et al., 2015; Li et al., 2015). The previous global 
PCA results indicate that the first seven components 
can collectively explain 66.8  % of the variance in data 
structure. Consequently, it is reasonable to retain seven 
components for further GWPCA analysis.

For this study, we are guided by an automatic 
routine for bandwidth selection. Through an adaptive 
bandwidth selection procedure, an optimal bandwidth 
of 441 km has been reached, which is chosen to run the 
GWPCA analysis. 

The GWPCA outputs can be visualized and inter-
preted, focusing on: (1) how the data dimensionality var-
ies spatially and (2) how the original variables influence 
the components (Li et al., 2015). The spatial distribution 
of local PTV of first seven components can be mapped. 
The percentage of the spatial variation of the general 
variation shows a clearly pronounced variability, with 
the formation of spatially homogeneous clusters in the 
meridional direction. Compared with the outputs from 
global PCA, the GWPCA has exhibited its power and 
strength in analyzing spatial patterns of regional cereal 
yields by mapping spatial variations of local principal 
components. Further, the local variance at each admin-

Figure 2: Spatial variation of the principal components 1-7
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istrative district explained by the calculated GWPCA 
1–7 can be visualized by mapping as well (fig. 4), which 
shows a clear east-west trend with the highest percentage 
variances distributed in the east, intermediate level in the 
central areas and the lowest values in the west. The obvi-
ous spatial clustering trend identified from the variance 
values in Figure 4 suggests that the interactions among 
these variables converge spatially.

It was suggested that the variables with the high-
est loading values and their impact intensity values can 
be mapped locally (Lloyd, 2010). We can next visualize 
how each of the seven variables locally influences a given 
component, by mapping the ‘winning variable’ with the 
highest absolute loading. Figure 5 shows the spatial dis-
tribution of variables with the absolute highest loading 
from GWPC 1–7 respectively.

The largest absolute loadings of a variable, which are 
the peculiarities of the spatial distribution of the grain 

yields in a given year, can be interpreted as a marker of 
the greatest sensitivity to oscillatory dynamics over time, 
as was shown for the global PCA. The local solutions 
can either largely correspond to the global outcome 
or vary in the significance of the oscillatory processes 
at the regional level, which may cause a change in the 
order of the components, or may be manifested in 
gaining statistical significance for processes that are not 
statistically significant at the global level.

The traditional representation of the “winning” 
variables for the principal components cannot fully reveal 
the nature of the spatially dependent relationship between 
the indicators estimated by the PCA. The overweigh of 
the factor loading is one of the aspects that reflects in 
the crop yields dynamics. Due to the oscillating nature 
of this dynamics, overweighs are the random outlier of 
the indicator at a certain moment of time in comparison 
with the general repetitive dynamics. Therefore, for each 

Figure 3: Monte Carlo test for GWPCA

Figure 4: Spatial variation of the percentage of the total variation of the first seven principal components (percentage of total vari-
ance – PTV)
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of the statistically significant principal components, we 
conducted the classification of administrative districts 
by cluster analysis based on distance, which is opposite 
to the Pearson correlation coefficient. Such a distance is 
sensitive to the form of comparable indicators, and not 
to their absolute values. This approach allows identifying 
groups of administrative districts with the similar time 
dynamics of cereal and grain legumes yields in the aspect 

of the corresponding principal component. It can be 
assumed that the aggregate of the administrative districts 
with similar yields dynamics are also geographically close 
and form the homogeneous ecological regions.

To be consistent with the global PCA analysis, only 
the first component GWPC 1 from GWPCA will be in-
terpreted in details, because it explains 22.60  % of the 
total variability.

Figure 5: Spatial location of variables with the largest loading for the principal components 1-7

Figure 6: Cluster analysis of administrative districts by factor loadings values GWPC
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Cluster analysis of administrative districts by factor 
loading values GWPC 1 allowed the establishment of 
four homogeneous clusters (Fig. 6). 

The average factor loadings for each cluster were 
calculated and the specifics of the corresponding clusters 
can be appreciated (Fig. 5, 7). For cluster 4, the greatest 
loading is characteristic for the variable 4 (yield in 1994), 
which corresponds to the so-called “winning” variable. 
But the information of the “winning variable” does not 
indicate anything about the characteristics of the overall 
yield dynamics within the corresponding cluster. For 
the cluster 3, the “winning” variable is the smallest (the 
largest module) variable 9, which is obviously an outlier, 
if the factor loading by this variable would be smaller, 
then the bidder for the “winning” would be the variable 
27, which is also by its origin most likely an outlier.

Established clusters and their factor loadings 
distributions explaining the process progress that are 
characteristic for the corresponding cluster. Appar-

ently, the general trend of the principal component 
1 is the damping of the amplitude of oscillations 
during the research period and the predominance of 
higher frequency components of oscillatory dynamics 
corresponding to the heterogeneity of observations 
overtime or the heteroscedasticity. So, the Koenker-
Bassett test for cluster 1 indicates the heteroscedasticity 
of the time dynamics of factor loadings (3.54, p = 0.06) 
(Koenker & Bassett, 1982). The heteroscedasticity level is 
even higher for cluster 2 (6.89, p = 0.008) and for cluster 
4 (10.71, p = 0.001). The variation of factor loadings in 
cluster 3 is homogeneous over time (Koenker -Bassett test 
1.62, p = 0.20). Thus, the qualitative feature of the grain 
and grain legumes yields dynamics in the corresponding 
clusters is the different level of damping of the oscillations 
of the principal component 1 over time.

Spatial arrangement of administrative areas 
included in the corresponding clusters is spatially regular 
(fig. 8).

Figure 7: The average values of factor loadings of GWPC 1 for clusters 1-4

Figure 8: Spatial location of clusters obtained on the basis of factor loadings of GWPC 1
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Cluster 2 occupies the east and the center of the 
studied area. Cluster 3 is located northwest of cluster 2. 
Cluster 1 is disruptive and is located in the north and 
south of the region. Cluster 4 covers the west of the re-
gion. The central part of the region is characterized by a 
steady-state oscillation regime during the research period 
(cluster 3) or a relatively low level of heteroscedasticity 
(cluster 1). For the east and the west, the damping 
amplitude of oscillation of factor 1 is characteristic.

4	 DISCUSSION

One of the most recent approaches to the quanti-
fying spatial variations for specific land management is 
based on the division of the field into land management 
zones according to yield level (Khosla et al., 2002). This 
analysis of yield maps is a fundamental tool in the in-
vestigation and understanding of the causes of yield and 
crop quality variations and may become the decision 
procedure for land management (Filho et al., 2010). 

In the course of our research, we made empha-
sis on the evaluation of the correlative relationship be-
tween time series of cereal and grain legumes (pulses) 
yield within the administrative districts of the forest and 
forest-prairie zone of Ukraine (1991-2017). The obtained 
results indicate that productivity as a result of agroeco-
systems functioning has a complex nature and is affected 
by the influence of different factors. The impact of these 
factors can be identified through the research of synchro-
nous dynamics characteristics. The synchronous dynam-
ics expresses itself through the forming of the correlation 
relationship. The correlation matrix is the basis for the 
PCA and cluster analysis. PCA allows to discover the 
main variability trends of agricultural crops productivity. 
Cluster analysis led to the establishment of the homoge-
neous ecological area (Zhukov et al., 2018; Zymaroieva 
et al., 2020b).

As such, PCA enables to identify the main statistical 
characteristics of the regional agricultural development 
and reveal the intrinsic complicate interactions among 
the selected variables (Li et al., 2015). Thus, the global 
PCA revealed the presence of dynamic processes of cereal 
and grain legumes yields which have the oscillatory 
nature with different frequencies. We associate oscil-
latory processes of the varying frequency with causes 
of different nature. The oscillating processes within a 
period of 10 years or more may be of climatic origin. 
So, the oscillatory process within the longest period (13 
years – larger periods are hypothetical due to relatively 
limited time series) is characteristic for the principal 
component 1 (PCA 1), which explains the largest part 
of grain and grain legumes yields variability (22.6 %). It 

is possible to assume that among agro-ecological factors 
climate changes mostly influence crop productivity. For 
all other principal components, oscillation processes are 
more frequent (from 3 to 9 years). High frequency yield 
components may have the character of noise and may 
have an environmental origin as a consequence of such 
phenomena as the impact of diseases and pests, or the 
impact of weather anomalies. 

Agroecological zoning was made according to the 
principle of uniformity of character dynamics of the pro-
duction potential of agricultural areas. This approach is 
fundamentally different from that of zoning based on the 
total yield of crops (Lazarenko, 1995). Classification on 
the basis of absolute yield value is justified for systems 
that are close to the steady-state. In the face of global cli-
mate change and the transformation of the environmen-
tal regimes, this approach is unacceptable. The agroeco-
logical zones proposed by us do not differ in the overall 
level of productivity of grain and leguminous during the 
study period. Features of these zones are due to the val-
ues of principal components and reflect the nature of the 
relationship between different spatial units. Spatial dis-
tribution of principal components indicates a continual 
pattern, but their overlapping allows us to determine spa-
tially discrete units, which we identified as agroecological 
zones. Each zone is characterized by a certain character 
and dynamics of production capacity and has an invari-
ant pattern of response to varying climatic, environmen-
tal, and agroeconomic factors.

5	 CONCLUSIONS

The global principal components analysis revealed 
the presence of dynamic processes of cereal and grain 
legumes yields which have the oscillatory nature with 
different frequencies. We associate oscillatory processes 
of the varying frequency with causes of different nature. 

The oscillating processes with a period of 10 years 
or more may be of climatic origin. So, the oscillatory 
process with the longest period (13 years – longer pe-
riods are hypothetical due to relatively limited time 
series) is characteristic for the principal component 1 
(PCA 1), which explains the largest part of cereal and 
grain legumes yields variability (22.6  %). It is possible 
to assume that among agro-ecological factors climate 
changes mostly influence crop productivity. For all other 
principal components, oscillation processes are more 
frequent (from 3 to 9 years). High frequency yield com-
ponents may have the character of noise or may have en-
vironmental origins as a consequence of such phenom-
ena as the impact of diseases and pests, or the impact of 
weather anomalies. 
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Due to geographically weighted principal compo-
nents analysis, spatial units with a similar oscillating com-
ponent of the cereal and grain legumes yields variation 
were revealed. Since we consider only the environmental 
component of yield variation, territorial clusters, within 
which the yields dynamics are the same, can be consid-
ered as agroecological zones for crops cultivation. 
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