Diversity of endophytic fungal community associated to the roots of Argania spinosa (L.) Skeels growing in the arid and semi-arid regions of Algeria

Abdallah NOUI, Abdelkader SAADI, Abdul SHAKOOR, Abdelaziz MEROUANE, Nassima MOSTEFA DELLA, Gul ZAIB, Damilare Stephen AKINYEMI, Housseyn MEDJAHED


Current study identified endophytic fungi associated to Argania spinosa (argan) roots and revealed diverse haplotype diversity by the sequencing of internal transcribed spacer (ITS). 586 operational taxonomic units were identified and these operational taxonomic units (OTUs) could be assigned to fungal functional diversity such as endophytes, ectomycorrhiza and putative pathogens. Ascomycota phylum was abundant. Beside Ascomycota phylum, Basidiomycota members were also found in argan roots. Geopora, Sebacina, Knufia, Tomentella, Penicillim had high relative abundance. Our results highlighted a non-nested assemblage of fungi. Current non-nested findings also confirm that fungi have similar pattern found in other habitats. Pairwise analysis mirrored segregation pattern between same and different functional fungal group. Fungi in semi-arid conditions are non-randomly structured. Members of Ascomycota phylum had high Z-scores. This is the first molecular study conducted in arid and semi-arid habitats of Algeria aiming to identify fungi associated with roots in argan tree. Given the fact that deserts are among harsh environments and fungi associated to desert plants may have implications for biodiversity and ecosystem functioning.


Argania spinose; fungi, diversity; internal transcribed spacer; endophytes; ectomycorrhiza

Full Text:



Austin, A. T., Yahdjian, L., Stark, J. M., Belnap, J., Porporato, A., Norton, U., Schaeffer, S. M. (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. [Research Support, Non-U.S. Gov't https://doi.org/10.1007/s00442-004-1519-1

Bahram, M., Harend, H., & Tedersoo, L. (2014). Network perspectives of ectomycorrhizal associations. Fungal Ecology, 7, 70-77. https://doi.org/10.1016/j.funeco.2013.10.003

Buee, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., & Martin, F. (2009). Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. [Research Support, Non-U.S. Gov't]. New Phytol, 184(2), 449-456. https://doi.org/10.1111/j.1469-8137.2009.03003.x

Charrouf, Z., & Guillaume, D. (2009). Sustainable Development in Northern Africa: The Argan Forest Case. Sustainability, 1(4), 1012-1022. https://doi.org/10.3390/su1041012

Collins, S. L., Sinsabaugh, R. L., Crenshaw, C., Green, L., Porras-Alfaro, A., Stursova, M., & Zeglin, L. H. (2008). Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 96(3), 413-420. https://doi.org/10.1111/j.1365-2745.2008.01362.x

Courty, P.-E., Buée, M., Diedhiou, A. G., Frey-Klett, P., Le Tacon, F., Rineau, F., Garbaye, J. (2010). The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biology and Biochemistry, 42(5), 679-698. https://doi.org/10.1016/j.soilbio.2009.12.006

Díaz-Barradas, M. C., Zunzunegui, M., Ain-Lhout, F., Jáuregui, J., Boutaleb, S., Álvarez-Cansino, L., & Esquivias, M. P. (2010). Seasonal physiological responses of Argania spinosa tree from Mediterranean to semi-arid climate. Plant and Soil, 337(1-2), 217-231. https://doi.org/10.1007/s11104-010-0518-8

Edgar, R. C., & Flyvbjerg, H. (2015). Error filtering, pair assembly and error correction for next-generation sequencing reads. [Evaluation Studies]. Bioinformatics, 31(21), 3476-3482. https://doi.org/10.1093/bioinformatics/btv401

Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. [Research Support, Non-U.S. Gov't. https://doi.org/10.1093/jxb/ern059

Flores-Renteria, L., Lau, M. K., Lamit, L. J., & Gehring, C. A. (2014). An elusive ectomycorrhizal fungus reveals itself: a new species of Geopora (Pyronemataceae) associated with Pinus edulis. [Research Support, Non-U.S. Gov't https://doi.org/10.3852/13-263

Fortuna Miguel, A., Stouffer Daniel, B., Olesen Jens, M., Jordano, P., Mouillot, D., Krasnov Boris, R., Bascompte, J. (2010). Nestedness versus modularity in ecological networks: two sides of the same coin? Journal of Animal Ecology, 79(4), 811-817. https://doi.org/10.1111/j.1365-2656.2010.01688.x

Frossard, A., Ramond, J.-B., Seely, M., & Cowan, D. A. (2015). Water regime history drives responses of soil Namib Desert microbial communities to wetting events. Scientific Reports, 5, 12263. https://doi.org/10.1038/srep12263

Gonzalez-Teuber, M., Vilo, C., & Bascunan-Godoy, L. (2017). Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genom Data, 11, 109-112. https://doi.org/10.1016/j.gdata.2016.12.015

Gordon, G. J., & Gehring, C. A. (2011). Molecular characterization of pezizalean ectomycorrhizas associated with pinyon pine during drought. [Research Support, Non-U.S. Gov't. https://doi.org/10.1007/s00572-010-0349-8

Research Support, U.S. Gov't, Non-P.H.S.]. Mycorrhiza, 21(5), 431-441. https://doi.org/10.1007/s00572-010-0349-8

Grishkan, I., & Nevo, E. (2010). Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, central Negev desert, Israel. Fungal Ecology, 3(4), 326-337. https://doi.org/10.1016/j.funeco.2010.01.003

Guimaraesjr, P., & Guimaraes, P. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling & Software, 21(10), 1512-1513. https://doi.org/10.1016/j.envsoft.2006.04.002

Ihrmark, K., Bodeker, I. T., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Lindahl, B. D. (2012). New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities. [Research Support, Non-U.S. Gov't]. FEMS Microbiol Ecol, 82(3), 666-677. https://doi.org/10.1111/j.1574-6941.2012.01437.x

Kenny, L., & De Zborowski, I. (2007). Atlas de l'arganier et de l'arganeraie. Rabat, Maroc: IAV Hassan II.

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., . . . Gonzalez, A. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7(7), 601-613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

Loro, M., Valero-Jiménez, C. A., Nozawa, S., & Márquez, L. M. (2012). Diversity and composition of fungal endophytes in semiarid Northwest Venezuela. Journal of Arid Environments, 85, 46-55. https://doi.org/10.1016/j.jaridenv.2012.04.009

Martínez-García, L. B., Armas, C., Miranda, J. d. D., Padilla, F. M., & Pugnaire, F. I. (2011). Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biology and Biochemistry, 43(3), 682-689. https://doi.org/10.1016/j.soilbio.2010.12.006

Pickles, B. J., Genney, D. R., Anderson, I. C., & Alexander, I. J. (2012). Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. [Research Support, Non-U.S. Gov't]. Mol Ecol, 21(20), 5110-5123. https://doi.org/10.1111/j.1365-294X.2012.05739.x

Porras-Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Novel root fungal consortium associated with a dominant desert grass. [Research Support, U.S. Gov't, Non-P.H.S.]. Appl Environ Microbiol, 74(9), 2805-2813. https://doi.org/10.1128/AEM.02769-07

Roy-Bolduc, A., Laliberte, E., & Hijri, M. (2016). High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecol Evol, 6(1), 349-362. https://doi.org/10.1002/ece3.1881

Saunders, M., Glenn, A. E., & Kohn, L. M. (2010). Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes. Evol Appl, 3(5-6), 525-537. https://doi.org/10.1111/j.1752-4571.2010.00141.x

Sellal, Z. (2016). Arbuscular Mycorrhizal fungi species associated with rhizosphere of Argania spinosa (L.) Skeels in Morocco. International Journal of Pure & Applied Bioscience, 4(1), 82-99. https://doi.org/10.18782/2320-7051.2201

Smith, S. E., & Read, D. (2008). 1 - The symbionts forming arbuscular mycorrhizas Mycorrhizal Symbiosis (Third Edition) (pp. 13-41). London: Academic Press. https://doi.org/10.1016/B978-012370526-6.50003-9

Treseder, K. K. (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164(2), 347-355. https://doi.org/10.1111/j.1469-8137.2004.01159.x

Ulrich, W. (2008). Pairs - a FORTRAN program for studying pair wise species associations in ecological matrices [8]. Pairs.

Ulrich, W., Almeida-Neto, M., & Gotelli, N. J. (2009). A consumer's guide to nestedness analysis. Oikos, 118(1), 3-17.


Větrovský, T., & Baldrian, P. (2013). Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biology and Fertility of Soils, 49(8), 1027-1037. https://doi.org/10.1007/s00374-013-0801-y

Wagg, C., Pautler, M., Massicotte, H. B., & Peterson, R. L. (2008). The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. [Research Support, Non-U.S. Gov't]. Mycorrhiza, 18(2), 103-110. https://doi.org/10.1007/s00572-007-0157-y

Wehner, J., Powell, J. R., Muller, L. A. H., Caruso, T., Veresoglou, S. D., Hempel, S., . . . van der Heijden, M. (2014). Determinants of root-associated fungal communities within Asteraceae in a semi-arid grassland. Journal of Ecology, 102(2), 425-436. https://doi.org/10.1111/1365-2745.12197

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetique. In A. Press (Ed.), PCR protocols (pp. 315). San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Zhang, T., Jia, R.-L., & Yu, L.-Y. (2016). Diversity and distribution of soil fungal communities associated with biological soil crusts in the southeastern Tengger Desert (China) as revealed by 454 pyrosequencing. Fungal Ecology, 23, 156-163. https://doi.org/10.1016/j.funeco.2016.08.004

DOI: http://dx.doi.org/10.14720/aas.2019.114.1.12


  • There are currently no refbacks.

Copyright (c) 2019 Abdallah NOUI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941