The effect of a new non-toxic water-soluble selenorganic substance on antioxidant protection and development of seedlings of oilseed radish (Raphanus sativus L. var. oleiferus Metzg.)

Irina Sergeevna NESTERKINA, Maxim Viktorovich MUSALOV, Veronika Valerievna GURINA, Natalya Vladimirovna OZOLINA, Ekaterina Vladimirovna SPIRIDONOVA, Anastasya Valerevna TRETYAKOVA, Vladimir Alekseevich POTAPOV, Svetlana Viktorovna AMOSOVA, Vladimir Andreevich YAKIMOV



The effect of 2,6-dipyridinium selenabicyclo[3.3.1]nonandibromide (996 zh) on the level of lipid peroxidation (LPO), on the activity of glutathione reductase (GR) and on the morphometric parameters of oilseed radish seedlings under normal conditions and under stress (200 mmol NaCl) has been studied. It has been established that the substance 996 zh at a concentration of 100 μm exerted an antioxidant effect reducing the level of lipid peroxidation and increasing the activity of GR. In connection with that the germinating ability of seeds and the biomass of the roots and stems of seedlings increased, both under normal conditions and under stress conditions.

The concentration of the substance 996 zh of 1000 μmol had a toxic effect, increasing the LPO level in normal conditions, but neutralized the effect of stress due to the addition of NaCl. This concentration had a slight inhibitory effect on germinability and on root development in seedlings. However, the same concentration of the substance 996 zh (1000 μmol) had a positive effect on the development of shoots under both normal and stressed conditions.


selenium compounds; oilseed radish; glutathione reductase; lipid peroxidation

Full Text:



Accurso, A. A., Cho, S. H., Amin, A., Potapov, V. A., Amosova, S. V., Finn, M. G. (2011). Thia-, Aza-, and Selena[3.3.1]bicyclononane Dichlorides: Rates vs Internal Nucleophile in Anchimeric Assistance. J. Org. Chem, 76, 4392–4395. https://doi/10.1021/jo102440k

Alfthan, G., Eurola, M., Ekholm, P.,Venäläinen, E. R., Root, T., Korkalainen, K., Hartikainen, H., Salminen, P., Hietaniemi, V., Aspila, P., Aro, A. (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J Trace Elem Med Biol, 31, 142−7. https://doi/10.1016/j.jtemb.2014.04.009

Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D., Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci, 6, 868. https://doi/10.3389/fpls.2015.00868

Bradford , M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem ,72, 248–254.

Chernenko, K. I., Balakova, A. A., Shmarina, Y. G., Ryaskova, K.E. (2017). Prospects for the use of leguminous crops in the creation of selenium-enriched crop production. Unique research of the XXI century, 1, 26–29.

Dorofeev, N. V., Bojarkin, E. V., Peshkova, A. A. (2013). Factors defining field germination of oilseed radish seeds. Journal of Stress Physiology & Biochemistry, 9, 159−168.

Farooq, M., Hussain, M., Usman, M., Farooq, S., Alghamdi, S. S., Siddique, K. H. M. (2018). Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. J Agric Food Chem, 66, 8887–8897. https://doi/10.1021/acs.jafc.8b02924

Gill, S. S., Tuteja, N. (2010). Reactive oxygen speciesand antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48, 909−30. https://doi/10.1016/j.plaphy 2010.08.016

Gill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., Tuteja, N. (2013). Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem, 70, 204−12. https://doi:10.1016/j.plaphy.2013.05.032

Kashevarov, N. I., Mustafin, A. M., Kharchevnikov, V. V. (2016). Radish oil in Siberia. Novosibirsk: publishing house of the RAS. FASE Russia. FSBSI Siberian scientific research Institute of feed. 129 p.p.

Kokorin, A. L., Petrova, N. A., Dem–Roy, G. B. (2015). Effect of trace elements of sprouted seeds of soybean varieties of the Northern ecotype. News of Saint-Petersburg state agrarian University, 40, 28–33.

Mugesh, G., Panda, A., Singh, H. B., Punekar, N. S., Butcher, R.J. (2001). Glutathione Peroxidase-like Antioxidant Activity of Diaryl Diselenides: A Mechanistic Study. Am. Chem. Soc., 123, 839–850. https://doi/10.1021/ja994467p

Nikonov, I. N., Ivanov, L. I., Kovalenko, L. V., Folmanis, G. E.(2009). The influence of nanoscale selenium on the growth of agricultural crops. Promising material, 4, 54–57.

Nigmatullina, L. R., Rumyantseva, N. I., Kostyukova, Y. A. (2014). The effect of D,L –buthionine - S,R -sulfoximine on the ratio of glutathione forms and the growth of Tatar buckwheat calli. Ontogenesis,45, 50–62.

Nogueira, C. W., Zeni, G., Rocha, J. B. T. (2004). Organoselenium and organotellurium compounds. Toxicology and pharmacology. Chemistry Revie, 104, 6255–6286.

Hawrylak-Nowak, B., Matraszek, R., Szymańska, M. (2010). Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res, 138, 307–15.

Placer, Z. (1968). Lip peroxidation systeme im biologischen material. Nahrung, 12, 679p.

Potapov, V. A., Amosova, S.V. (2003). New methods for preparation of organoselenium and organotellurium compounds from elemental chalcogens. Russian Journal of Organic Chemistry, 39, 1373–1380.

Potapov, V. A., Musalov M. V., Musalova M. V., Amosova S. V. (2016). Recent Advances in Organochalcogen Synthesis Based on Reactions of Chalcogen Halides with Alkynes and Alkenes. Current Organic Chemistry, 20, 136 145.

Surin, N. A., Lyakhov, N. E., Gerasimov, S. A., Lepshin, A. G. (2018). Evaluation of collection samples of spring barley in breeding for productivity and quality of grain in Eastern Siberia. The achievements of science and technology, agriculture, 32, 41-44.

Saidi, I., Chtourou, Y., Djebali, W. (2014). Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. Journal of Plant Physiology, 171, 85–91. https://doi/10.1016/j.jplph.2013.09.024

Sindirepa, A. V., Stepanova, O. V., Serebrennikova, A. A. ( 2013). Influence of selenium and iodine on growth and development of grain crops. Materials XI all-Russian scientific and practical conference of students, postgraduates and young scientists, which was held in Perm, Russia. Publishing house of Perm national research Polytechnic University, 233–241.

Tian, M., Hui, M., Thannhauser, T. W., Pan, S., Li, L. (2017). Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica). Front. Plant Sci., 8, 1425.

Yurkova, I. N., Omelchenko, V. V. (2015). Influence of nanoparticles of selenium and sodium Selenite on the growth and development of wheat plants. Scientific notes of V. I. Vernadsky Crimean Federal University Series Biology, chemistry, 1, 99–106.



  • There are currently no refbacks.

Copyright (c) 2019 Irina Sergeevna Nesterkina, Maxim Viktorovich Musalov, Veronika Valerievna Gurina, Natalya Vladimirovna Ozolina, Ekaterina Vladimirovna Spiridonova, Anastasya Valerevna Tretyakova, Vladimir Alekseevich Potapov, Svetlana Viktorovna Amosova, Vladimir Andreevich Yakimov

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941