High-efficient transgenic hairy roots induction in chicory: re-dawn of a traditional herb
Abstract
Plant roots can be manipulated by Agrobacterium rhizogenes to stimulate the production of heterologous proteins for pharmaceutical applications as green cell-factories. During the present study, four bacterial strains (A4, ATCC15834, ATCC11325 and A13) in combination with three co-cultivation media (MS, B5, LS) were examined to establish an efficient and reliable transformation system for chicory (Cichorium intybus L.) using A. rhizogenes. The maximum chicory hairy roots induction was achieved using A13 strain. The observation confirmed that MS medium was more effective on hairy root growth. Dried biomass accumulation of hairy roots infected by A13 strain was 1.10 g l-1 in MS medium which was significantly higher than those grown in LS and B5 medium (0.88 and 0.72 g l-1, respectively). Beta-glucuronidase (GUS) gene was introduced by A13 strain carrying the pCAMBIA1304 binary vector. The results showed that the highest frequency of transformation (63.15 %) was achieved using A13 strain and MS cultivation medium. Detection of GUS and hptII genes by PCR and GUS histochemical localization confirmed the integrative transformation in hairy roots. In conclusion, the whole process was successfully optimized as a pre-step to manipulate the chicory hairy root cells to improve the unique potential of secondary metabolite production.
Keywords
Full Text:
PDFReferences
Bais. HP., Govindaswamy. S., Ravishankar. GA. (2000). Enhancement of growth and coumarin production in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow local) under the influence of fungal elicitors. Journal of bioscience and bioengineering, 90: 648-653. DOI: 10.1016/S1389-1723(00)90011-2
Birnboim. HC., Doly. J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res, 7: 1513-1523. DOI: 10.1093/nar/7.6.1513
Bivadi. V., Asghari. ZR., Zare. N., Yazdani. B. (2014). Effects of different tissue culture conditions in Hairy roots induction in Hypericum perforatum L. International Research Journal of Applied and Basic Sciences, 8: 597-604.
Bo. J., Wensheng. H., Cunxiang. W., Bin. L., Wei. L., Shikui. S., Yurong. B., Tianfu. H. (2009). Agrobacterium rhizogenes-mediated transformation of Superroot derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biology, 9: 78. DOI: 10.1186/1471-2229-9-78
Cao. D., Hou. W., Song. S., Sun. H., Wu. C., Gao. Y., Han. T. (2009). Assessment of conditions affecting Agrobacterium rhizogenes-mediatedtransformation of soybean. Plant Cell Tissue Organ Cult, 96: 45-52. DOI: 10.1007/s11240-008-9458-x
Cho. HJ., & Wildholm. JM. (2002). Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cel Tiss Org Cult 69: 259–269. DOI: 10.1023/A:1015624316573
Choi. PS., Kim. YD., Choi. KM., Chung. HJ., Choi. DW., Liu. JR. (2004). Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell, Rep 11: 828-831. DOI: 10.1007/s00299-004-0765-3
Daimon. H., Fukami. M., Mii. M. (1990). Hairy root formation in peanut by the wild type strains of Agrobacterium rhizogenes. Plant Tissue Cult Lett, 7: 31-34. DOI: 10.5511/plantbiotechnology1984.7.31
Dellaporta. SL., Wood. J., Hicks. JB. (1983). A plant DNA minipreparation version II. Plant Molecular Biology Reporter, 1: 19-21. DOI: 10.1007/BF02712670
Gamborg. OL., Miller. RA., Ojima. K. (1968). Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res, 50: 151-158. DOI: 10.1016/0014-4827(68)90403-5
Giri. A., & Narasu. M. L. (2000). Transgenic hairy root. recent trends and application Biotechnology advances, 18: 1-22. DOI: 10.1016/S0734-9750(99)00016-6
Guellec. V., David. C., Branchard. M., Tempe. J. (1990). Agrobacterium rhizogenes mediated transformation of grapevine Vitis vinifera L. Plant Cell, Tissue and Organ Culture, 24: 91-5 .
Han. K. H., Keathley. D. E., Davis. J. M., Gordon. M. P. (1993). Regeneration of a transgenic woody legume (Robinia pseudoacacia L. blacklocust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Plant Sci, 88: 149–157. DOI: 10.1016/0168-9452(93)90086-F
Harsh. P. B., Venkatesh. R. T., Chandrashekar. A., Ravishankar. G. A. (2001). Agrobacterium rhizogenes-mediated transformation of Witloof chicory in vitro shoot regeneration and induction of flowering. Current science, 80: 83-87.
Henzi. M. X., Christey. M. C., McNeil. D. L. (2000). Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italic. Plant Cell Reports, 19: 994-999. DOI: 10.1007/s002990000221
Jefferson. R. A., Kavanagh. T. A., Bevan. M. W., (1987). GUS-fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 6: 3901-3907.
Karimi. M. H., Ebrahimnezhad. S., Namayandeh. M., Amirghofran. Z. (2014). The effects of Cichorium intybus extract on the maturation and activity of dendritic cells. Daru, 22: 28-34. DOI: 0.1186/2008-2231-22-28
Kastell. A., Smetanska. I., Ulrichs. C., Cai. Z., Mewis. I. (2013). Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Applied biochemistry and biotechnology, 169: 624-635. DOI: 10.1007/s12010-012-0017-x
Krolicka. A., Stanszewska. I., Bielawski. K., Malinski. E., Szafranek. J., Lojkowska. E. (2001). Establishment of hairy roots of Ammi majus. Plant Science, 160: 259-264. DOI: 10.1016/S0168-9452(00)00381-2
Lee. M. H., Yoon. E. S., Jeong. J. H., Choi. Y. E. (2004). Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters. Plant Cell Reports, 22: 822-827. DOI: 10.1007/s00299-004-0763-5
Lee. S. Y., Kim. S. G., Song. W. S., Kim. Y. K., Park. N., Park. S. U. (2010). Influence of different strains of Agrobacterium rhizogenes on hairy root induction and production of alizarin and purpurin in Rubia akane Nakai. Romanian Biotechnol Lett, 15: 5405-5409.
Lining. T., Fatih. A. C., Xinhua. W., Susan. S. (2009). Genetic transformation of Prunus domestica L. using the hpt gene codingfor hygromycin resistance as the selectable marker. Scientia Horticulturae, 119: 339–343. DOI: 10.1016/j.scienta.2008.08.024
Linsmaier. E. M., & Skoog. F. (1965). Organic growth factor requirement of tobacco tissue cultures. Physiol. Plant, 18: 100-127. DOI: 10.1111/j.1399-3054.1965.tb06874.x
Malarz. J., Stojakowska. A., Kisiel. W. (2002). Sesquiterpene lactones in a hairy root culture of Cichorium intybus. Z Naturforsch C, 57: 994-997. DOI: 10.1515/znc-2002-11-1207
Masaaki. K., Hirashima. K., Nakahar. T. (2000). Genetic Transformation in Vaccaria pyramidat Using Agrobacterium rhizogenes. Plant Biotechnology, 17: 163- 166. DOI: 10.5511/plantbiotechnology.17.163
Mehrotra. S., Arun. K. K., Suman. P., Singh. K., Bhartendu. N. M. (2008). Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electronic Journal of Biotechnology, 11: 1-7. DOI: 10.2225/vol11-issue2-fulltext-6
Murashige. T., & Skoog. F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 15: 473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x
Nandagopal. S., & Kumari. B. R. (2007). Phytochemical and antibacterial studies of Chicory (Cichorium intybus L.)-A multipurpose medicinal plant. Advances in Biological Research, 1: 17-21.
Ooi. C. T., Syahida. A., Stanslas. J., Maziah. M. (2013). Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum. World Journal of Microbiology and Biotechnology, 29: 421-430. DOI: 10.1007/s11274-012-1194-z
Otani. M., Mii. M., Handa. T., Kamada. H., Shimada. T. (1993). Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci, 94: 151-159. DOI: 10.1016/0168-9452(93)90016-S
Pakdin. A., Farsi. M., Nematzadeh. G. A., Mirshamsi. A. (2014). Impact of different culture media on hairy roots growth of Valeriana officinalis L. Acta agriculturae Slovenica, 103: 299-305. DOI: 10.14720/aas.2014.103.2.14
Pakdin. A., & Farsi. M. (2013). Effect of different Agrobacterium rhizogenes strains on hairy root induction in Valeriana officinalis L. Continental Journal of Biological Sciences, 6: 9-15.
Porter, R. R. (1991). Host range and implication of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci, 10: 387–421. DOI: 10.1080/07352689109382318
Puddephat. I. J., Robinson. H. T., Fenning. T. M., Barbara. D. J., Morton. A., Pink. D. A. C. (2001). Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Molecular Breeding, 7: 229-242. DOI: 10.1023/A:1011338322000
Resmi. N. R., Anand. M. P., Ramamurthy. S. (2005). T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Electronic Journal of Biotechnology, 8: 82-106.
Sarma. D., Arun. K., Baruah. A. (1997). Transforming ability of two Agrobacterium rhizogenes strains in Rauvolfia serpentina L. leaves. Indian Journal of Plant Physiology, 2: 166-168.
Sharafi. A., Hashemi. S. H., Mousavi. A., Azadi. P., Razavi. K., Ntui. V. O. (2013). A reliable and efficient protocol for inducing hairy roots in Papaver bracteatum. Plant Cell Tissue Organ Cult, 113: 1–9. DOI: 10.1007/s11240-012-0246-2
Sharafi. A., Sohi. H. H., Azadi. P., Sharafi. A. A. (2014). Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiology and Molecular Biology of Plants, 20: 257-262. DOI: 10.1007/s12298-013-0217-z
Sivakumar. G., Yu. K.W., Hahn. E.J., Paek. K.Y. (2005) Optimization of organic nutrients for ginseng hairy roots production in large-scale bioreactors. Current Science, 89: 641-649.
Srinivasan. M., Kumar. K., Kumutha. K., Marimuthu. P. (2014). Influence of acetosyringone concentration on induction of carrot hairy root by Agrobacterium rhizogenes. African Journal of Microbiology Research, 8: 2486-2491. DOI: 10.5897/AJMR2014.6623
Tamakawa. T., Sekiguchi. S., Kodama. T., Smith. S., Yeoman. M. M. (1998). Transformation of Chilli Pepper (Capsicum frutescens) With a Phenylalanine Amnlonia-Lyase Gene.Plant Biotechnolog, 15: 189-193. DOI: 10.5511/plantbiotechnology.15.189
Tepfer, D. (1984). Transformation of several species of highplants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell, 37: 959- 967. DOI: 10.1016/0092-8674(84)90430-6
Tomilov. A., Tomilova. N., Yoder. J. I. (2007). Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic-plant Triphysaria versicolor retain parasitic competence. Planta, 225: 1059-1071. DOI: 10.1007/s00425-006-0415-9
Wang. J.W., Wu. J.Y. (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. In Biotechnology of Hairy Root Systems (pp. 55-89). Springer Berlin Heidelberg. DOI: 10.1007/10_2013_183
Yamakawa. T., Sekiguchi. S., Kodama. T., Steven. M., Smith. M., Yeoman. M. (1998). Transformation of chilli pepper (Capsicum frutescens) with a phenylalanine ammonia-lyase gene. Plant Biotechnology, 15: 189-193. DOI: 10.5511/plantbiotechnology.15.189
DOI: http://dx.doi.org/10.14720/aas.2016.107.2.06
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Sara Kabirnataj, Ghorbanali Nematzadeh, Jafar Zolala, ahmad farhad Talebi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941