Bound phenolic compounds of whole cereal grains as a functional food component: part two
Abstract
Since they are eaten regularly, cereals based food make a significant contribution to the daily energy intake, meanwhile in whole-grain form they contribute to higher micronutrients intake that refined cereal products. The bound phenolic compounds, which are accumulated in cereal bran, play a key role in the duodenum, where they are transformed to the absorbable metabolites by microbial fermentation. In part two, an analysis of phenolic compounds is presented, with emphasis on the hydrolysis and extraction procedure for bound phenolic compounds, their quantification and identification. Due to poor bioavailability of non-extractable phenolic compounds, which critically limits the exploitation of their wide potential, the article also discusses techniques and new strategies that enable the release of phenolic compounds from insoluble bound forms during food processing. Two current approaches, germination and fermentation, are presented in more details. With transformation of bound phenolic compounds to more easily accessible free phenolic compounds, we also benefit from their antioxidant and antimicrobial efficacy in addition to a favorable anti-cancer effect on the colon. The awareness of consumers and their demand for healthier foods led to the exploration and incorporation of natural ingredients in the production of value added products. The extraction of ferulic acid from whole grain cereal products and its incorporation in functional food products is definitely an important area of future research.
Keywords
Full Text:
PDF (Slovensko (Slovenian))References
Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55. https://doi.org/10.1016/j.foodchem.2013.11.093
Alvarez-Jubete, L., Arendt, E. K., Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21(2), 106-113. https://doi.org/10.1016/j.tifs.2009.10.014
Alves, G. H., Ferreira, C. D., Vivian, P. G., Monks, J. L. F., Elias, M. C., Vanier, N. L., de Oliveira, M. (2016). The revisited levels of free and bound phenolics in rice: Effects of the extraction procedure. Food Chemistry, 208, 116-123. https://doi.org/10.1016/j.foodchem.2016.03.107
Anokwuru, C., Sigidi, M., Boukandou, M., Tshisikhawe, P., Traore, A., Potgieter, N. (2018). Antioxidant Activity and Spectroscopic Characteristics of Extractable and Non-Extractable Phenolics from Terminalia sericea Burch. ex DC. Molecules, 23(6), 1303. https://doi.org/10.3390/molecules23061303
Antognoni, F., Mandrioli, R., Potente, G., Taneyo Saa, D. L., Gianotti, A. (2019). Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chemistry, 292, 211-216. https://doi.org/10.1016/j.foodchem.2019.04.061
Arranz, S. & Saura Calixto, F. (2010). Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: A study in wheat flour and wheat bran and cereals of the diet. Journal of Cereal Science, 51(3), 313-318. https://doi.org/10.1016/j.jcs.2010.01.006
Bhanger, M. I., Iqbal, S., Anwar, F., Imran, M., Akhtar, M., Zia-ul-Haq, M. (2008). Antioxidant potential of rice bran extracts and its effects on stabilisation of cookies under ambient storage. International Journal of Food Science & Technology, 43(5), 779-786. https://doi.org/10.1111/j.1365-2621.2007.01515.x
Boubakri, H., Jdey, A., Taamalli, A., Taamalli, W., Jebara, M., Brini, F., Riciputi, Y., Pasini, F., Christian, M., Verardo, V. (2017). Phenolic composition as measured by liquid chromatography/mass spectrometry and biological properties of Tunisian barley. International Journal of Food Properties, 20(2), 1783-1797. https://doi.org/10.1080/10942912.2017.1359186
Boue, S. M., Daigle, K. W., Chen, M.-H., Cao, H., Heiman, M. L. (2016). Antidiabetic Potential of Purple and Red Rice (Oryza sativa L.) Bran Extracts. Journal of Agricultural and Food Chemistry, 64(26), 5345-5353. https://doi.org/10.1021/acs.jafc.6b01909
Cai, S., Wang, O., Wang, M., He, J., Wang, Y., Zhang, D., Zhou, F., Ji, B. (2012). In Vitro Inhibitory Effect on Pancreatic Lipase Activity of Subfractions from Ethanol Extracts of Fermented Oats (Avena sativa L.) and Synergistic Effect of Three Phenolic Acids. Journal of Agricultural and Food Chemistry, 60(29), 7245-7251. https://doi.org/10.1021/jf3009958
Călinoiu, L. F. & Vodnar, D. C. (2018). Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients, 10(11), 1615. https://doi.org/ 10.3390/nu10111615
Chandrasekara, A. & Shahidi F. (2011). Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. Journal of Functional Foods, 3(3), 144-158. https://doi.org/10.1016/j.jff.2011.03.007
Chen, P. X., Tang, Y., Zhang, B., Liu, R., Marcone, M. F., Li, X., Tsao, R. (2014). 5-Hydroxymethyl-2-furfural and Derivatives Formed during Acid Hydrolysis of Conjugated and Bound Phenolics in Plant Foods and the Effects on Phenolic Content and Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 62(20), 4754-4761. https://doi.org/10.1021/jf500518r
Chen, Z., Ma, Y., Yang, R., Gu, Z., Wang, P. (2019). Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chemistry, 288, 368-376. https://doi.org/10.1016/j.foodchem.2019.02.131
Chen, Z., Wang, P., Weng, Y., Ma, Y., Gu, Z., Yang, R. (2017). Comparison of phenolic profiles, antioxidant capacity and relevant enzyme activity of different Chinese wheat varieties during germination. Food Bioscience, 20, 159-167. https://doi.org/10.1016/j.fbio.2017.10.004
Costabile, A., Klinder, A., Fava, F., Napolitano, A., Fogliano, V., Leonard, C., Gibson, G. R., Tuohy, K. M. (2008). Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. British Journal of Nutrition, 99(1), 110-120. https://doi.org/ 10.1017/s0007114507793923
Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., Madani, K. (2014). Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Industrial Crops and Products, 61, 31-40. https://doi.org/10.1016/j.indcrop.2014.06.035
Das, A.K., Adsare, S.R., Das, M., Kulthe, P.S., Ganesan, P. (2017). Advanced Techniques in Extraction of Phenolics from Cereals, Pulses, Fruits, and Vegetables. V M.W. Siddiqui, V. Bansal, K. Prasad (Ur), Plant Secondary Metabolites, vol 2: Stimulation, Extraction and Utilization (str. 27-76).: New York, NY: Apple Academic Press, Inc.
de Oliveira, D. M., Finger-Teixeira, A., Rodrigues Mota, T., Salvador, V. H., Moreira-Vilar, F. C., Correa Molinari, H. B., Craig Mitchell, R. A., Marchiosi, R., Ferrarese-Filho, O., Dantas dos Santos, W. (2015). Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 13(9), 1224-1232. https://doi.org/ 10.1111/pbi.12292
Dykes, L. & Rooney, W. (2007). Phenolic Compounds in Cereal Grains and Their Health Benefits. Cereal Foods World, 52, 105-111.
Domínguez-Rodríguez, G., Marina, M. L., Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography A, 1514, 1-15. https://doi.org/10.1016/j.chroma.2017.07.066
Falcinelli, B., Benincasa, P., Calzuola, I., Gigliarelli, L., Lutts, S., Marsili, V. (2017). Phenolic Content and Antioxidant Activity in Raw and Denatured Aqueous Extracts from Sprouts and Wheatgrass of Einkorn and Emmer Obtained under Salinity. Molecules, 22(12), 2132. https://doi: 10.3390/molecules22122132
Faulds, C. B. (2010). What can feruloyl esterases do for us? Phytochemistry Reviews, 9(1), 121-132. https://doi.org/10.1007/s11101-009-9156-2
Gan, R.-Y., Lui, W.-Y., Wu, K., Chan, C.-L., Dai, S.-H., Sui, Z.-Q., Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology, 59, 1-14. https://doi.org/10.1016/j.tifs.2016.11.010
Gangopadhyay, N., Hossain, M. B., Rai, D. K., Brunton, N. P. (2015). A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules, 20(6), 10884-10909. https://doi: 10.3390/molecules200610884
Gänzle, M. G. (2014). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2-10. https://doi.org/10.1016/j.fm.2013.04.007
Gawlik-Dziki, U., Swieca, M., Dziki, D. (2012). Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.). Journal of Agricultural and Food Chemistry, 60(18), 4603-4612. https://doi: 10.1021/jf3011239
Gawlik-Dziki, U., Świeca, M., Dziki, D., Baraniak, B., Tomiło, J., Czyż, J. (2013). Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chemistry, 138(2), 1621-1628. https://doi.org/10.1016/j.foodchem.2012.09.151
Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., Rizzello, C. G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 302, 103-113. https://doi.org/10.1016/j.ijfoodmicro.2018.05.018
Golob, K. (2018). Vpliv osvetljevanja s svetlobo različnih valovnih dolžin na antioksidativni potencial kaljene pšenice : magistrsko delo.Ljubljana: Biotehniška fakulteta, Oddelek za živilstvo.
Gunenc, A., HadiNezhad, M., Farah, I., Hashem, A., Hosseinian, F. (2015). Impact of supercritical CO2 and traditional solvent extraction systems on the extractability of alkylresorcinols, phenolic profile and their antioxidant activity in wheat bran. Journal of Functional Foods, 12, 109-119. https://doi.org/10.1016/j.jff.2014.10.024
Hemalatha, P., Bomzan, D. P., Sathyendra, Rao B. V., Sreerama, Y. N. (2016). Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities. Food Chemistry, 199, 330-338. https://doi.org/10.1016/j.foodchem.2015.12.025
Hole, A. S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J., Sahlstrøm, S. (2012). Improved Bioavailability of Dietary Phenolic Acids in Whole Grain Barley and Oat Groat following Fermentation with Probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 60(25), 6369-6375. https://doi.org/10.1021/jf300410h
Hübner, F. & Arendt, E. K. (2013). Germination of Cereal Grains as a Way to Improve the Nutritional Value: A Review. Critical Reviews in Food Science and Nutrition, 53(8), 853-861. https://doi.org/10.1080/10408398.2011.562060
Hung, P. V., Hatcher, D. W., Barker, W. (2011). Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food Chemistry, 126(4), 1896-1901. https://doi.org/10.1016/j.foodchem.2010.12.015
Irakli, M., Katsantonis, D., Kleisiaris, F. (2015). Evaluation of quality attributes, nutraceutical components and antioxidant potential of wheat bread substituted with rice bran. Journal of Cereal Science, 65, 74-80. https://doi.org/10.1016/j.jcs.2015.06.010
Irakli, M., Kleisiaris, F., Kadoglidou, K., Katsantonis, D. (2018). Optimizing Extraction Conditions of Free and Bound Phenolic Compounds from Rice By-Products and Their Antioxidant Effects. Foods, 7(6), 93. https://doi.org/10.3390/foods7060093
Irakli, M. N., Samanidou, V. F., Biliaderis, C. G., Papadoyannis, I. N. (2012a). Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chemistry, 134(3), 1624-1632. https://doi.org/10.1016/j.foodchem.2012.03.046
Irakli, M. N., Samanidou, V. F., Biliaderis, C. G., Papadoyannis, I. N. (2012b). Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection. Journal of Separation Science, 35(13), 1603-1611. https://doi.org/10.1002/jssc.201200140
Katina, K., Liukkonen, K. H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S. M., Lampi, A. M., Pihlava, J. M., Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348-355. https://doi.org/10.1016/j.jcs.2007.07.006
Kim, K.-H., Tsao, R., Yang, R., Cui, S. W. (2006). Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 95(3), 466-473. https://doi.org/10.1016/j.foodchem.2005.01.032
Kim, M. J., Kwak, H. S., Kim, S. S. (2018). Effects of Germination on Protein, γ-Aminobutyric Acid, Phenolic Acids, and Antioxidant Capacity in Wheat. Molecules,,23(9), 2244. https://doi.org/10.3390/molecules23092244
Koistinen, V. M. & Hanhineva, K. (2017). Mass spectrometry-based analysis of whole-grain phytochemicals. Critical Reviews in Food Science and Nutrition, 57(8), 1688-1709. .https://doi.org/10.1080/10408398.2015.1016477
Konopka, I., Tańska, M., Faron, A., Czaplicki, S. (2014). Release of free ferulic acid and changes in antioxidant properties during the wheat and rye bread making process. Food Science and Biotechnology, 23(3), 831-840. https://doi.org/10.1007/s10068-014-0112-6
Krek, M. (2018). Vpliv osvetljevanja s svetlobo različnih valovnih dolžin na antioksidativni potencial kaljene pire : magistrsko delo. Ljubljana: Biotehniška fakulteta, Oddelek za živilstvo.
Kumar, P., Yadav, D., Kumar, P., Panesar, P. S., Bunkar, D. S., Mishra, D., Chopra, H. K. (2016). Comparative study on conventional, ultrasonication and microwave assisted extraction of γ-oryzanol from rice bran. Journal of food science and technology, 53(4), 2047-2053. https://doi.org/10.1007/s13197-016-2175-2
Li, F., Zhang, X., Zheng, S., Lu, K., Zhao, G., Ming, J. (2016). The composition, antioxidant and antiproliferative capacities of phenolic compounds extracted from tartary buckwheat bran (Fagopyrum tartaricum (L.) Gaerth). Journal of Functional Foods, 22, 145-155. https://doi.org/10.1016/j.jff.2016.01.027
Liyana-Pathirana, C. M. & Shahidi, F. (2006). Importance of Insoluble-Bound Phenolics to Antioxidant Properties of Wheat. Journal of Agricultural and Food Chemistry, 54(4), 1256-1264. https://doi.org/10.1021/jf052556h
Liyana-Pathirana, C. M. & Shahidi, F. (2007). The antioxidant potential of milling fractions from breadwheat and durum. Journal of Cereal Science, 45(3), 238-247. https://doi.org/10.1016/j.jcs.2006.08.007
Ma, Y., Wang, P., Wang, M., Sun, M., Gu, Z., Yang, R. (2019). GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chemistry, 270, 593-601. https://doi.org/10.1016/j.foodchem.2018.07.092
Madhujith, T. & Shahidi, F. (2007). Antioxidative and Antiproliferative Properties of Selected Barley (Hordeum vulgarae L.) Cultivars and Their Potential for Inhibition of Low-Density Lipoprotein (LDL) Cholesterol Oxidation. Journal of Agricultural and Food Chemistry, 55(13), 5018-5024. . https://doi.org/10.1021/jf070072a
Mir, N. A., Riar, C. S., Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science & Technology, 75, 170-180. https://doi.org/10.1016/j.tifs.2018.03.016
Montemurro, M., Pontonio, E., Gobbetti, M., Rizzello, C. G. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology, 302, 47-58. https://doi.org/10.1016/j.ijfoodmicro.2018.08.005
Moore, J., Cheng, Z., Hao, J., Guo, G., Liu, J.-G., Lin, C., Yu, L. (2007). Effects of Solid-State Yeast Treatment on the Antioxidant Properties and Protein and Fiber Compositions of Common Hard Wheat Bran. Journal of Agricultural and Food Chemistry, 55(25), 10173-10182. https://doi.org/10.1021/jf071590o
Musa-Veloso, K., Poon, T., Harkness, L. S., O'Shea, M., Chu, Y. (2018). The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 108(4), 759-774. https://doi.org/10.1093/ajcn/nqy112
Niroula, A., Khatri, S., Khadka, D., Timilsina, R. (2019). Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses. International Journal of Food Properties, 22(1), 427-437. https://doi.org/10.1080/10942912.2019.1588297
Oghbaei, M.& Prakash, J. (2016). Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food & Agriculture, 2(1), 1136015. https://doi.org/10.1080/23311932.2015.1136015
Oliveira, D. M., Mota, T. R., Oliva, B., Segato, F., Marchiosi, R., Ferrarese-Filho, O., Faulds, C. B., dos Santos, W. D. (2019). Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology, 278, 408-423. https://doi.org/10.1016/j.biortech.2019.01.064
Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240, 212-221. https://doi.org/10.1016/j.foodchem.2017.07.095
Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., Peñas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology, 76, 236-244. https://doi.org/10.1016/j.lwt.2016.07.064
Phan, M. A. T., Paterson, J., Bucknall, M., Arcot, J. (2018). Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Critical Reviews in Food Science and Nutrition, 58(8), 1310-1329. https://doi.org/10.1080/10408398.2016.1254595
Pradeep, P. M., Sreerama, Y. N. (2017). Soluble and bound phenolics of two different millet genera and their milled fractions: Comparative evaluation of antioxidant properties and inhibitory effects on starch hydrolysing enzyme activities. Journal of Functional Foods, 35, 682-693. https://doi.org/10.1016/j.jff.2017.06.033
Price, R. K., Wallace, J. M. W., Hamill, L. L., Keaveney, E. M., Strain, J. J., Parker, M. J., Welch, R. W. (2012). Evaluation of the effect of wheat aleurone-rich foods on markers of antioxidant status, inflammation and endothelial function in apparently healthy men and women. British Journal of Nutrition, 108(9), 1644-1651. https://doi.org/10.1017
/s0007114511007070
Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 58(15), 2531-2548. .https://doi.org/10.1080/10408398.2017.1331200
Serpen, A., Capuano, E., Fogliano, V., Gökmen, V. (2007). A New Procedure To Measure the Antioxidant Activity of Insoluble Food Components. Journal of Agricultural and Food Chemistry, 55(19), 7676-7681. https://doi.org/10.1021/jf071291z
Serpen, A., Gökmen, V., Mogol, B. A. (2012). Effects of different grain mixtures on Maillard reaction products and total antioxidant capacities of breads. Journal of Food Composition and Analysis, 26(1), 160-168. https://doi.org/10.1016/j.jfca.2012.02.001
Shi, J., Shan, S., Li, Z., Li, H., Li, X., Li, Z. (2015). Bound polyphenol from foxtail millet bran induces apoptosis in HCT-116 cell through ROS generation. Journal of Functional Foods, 17, 958-968. https://doi.org/10.1016/j.jff.2015.06.049
Singh, A. & Sharma, S. (2017). Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Critical Reviews in Food Science and Nutrition, 57(14), 3051-3071. https://doi.org/10.1080/10408398.2015.1085828
Singh, A. K., Rehal, J., Kaur, A., Jyot, G. (2015). Enhancement of Attributes of Cereals by Germination and Fermentation: A Review. Critical Reviews in Food Science and Nutrition, 55(11), 1575-1589. https://doi.org/10.1080/10408398.2012.706661
Slavin, J. (2003). Why whole grains are protective: biological mechanisms. Proceedings of the Nutrition Society, 62(1), 129-134. https://doi.org/10.1079/pns2002221
Šulniūtė, V., Jaime, I., Rovira, J., Venskutonis, P. R. (2016). Rye and Wheat Bran Extracts Isolated with Pressurized Solvents Increase Oxidative Stability and Antioxidant Potential of Beef Meat Hamburgers. Journal of Food Science, 81(2), H519-H527. https://doi.org/10.1111/1750-3841.13197
Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., Tsao, R. (2016). Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects. Journal of Agricultural and Food Chemistry, 64(8), 1712-1719. https://doi.org/10.1021/acs.jafc.5b05761
Terpinc, P., Abramovič, H. (2010). A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chemistry, 121(2), 366-371. https://doi.org/10.1016/j.foodchem.2009.12.037
Terpinc, P., Cigić, B., Polak, T., Hribar, J., Požrl, T. (2016). LC–MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chemistry, 210, 9-17. https://doi.org/10.1016/j.foodchem.2016.04.030
Terpinc, P., Polak, T., Poklar Ulrih, N., Abramovič, H. (2011). Effect of Heat Treatment of Camelina (Camelina sativa) Seeds on the Antioxidant Potential of Their Extracts. Journal of Agricultural and Food Chemistry, 59(16), 8639-8645. https://doi.org/10.1021/jf2016072
Terpinc, P., Polak, T., Šegatin, N., Hanzlowsky, A., Ulrih, N. P., Abramovič, H. (2011). Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chemistry, 128(1), 62-69. https://doi.org/10.1016/j.foodchem.2011.02.077
Ti, H., Zhang, R., Zhang, M., Li, Q., Wei, Z., Zhang, Y., Tang, X., Deng, Y., Liu, L., Ma, Y. (2014). Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chemistry, 161, 337-344. https://doi.org/10.1016/j.foodchem.2014.04.024
Van Hung, P. (2016). Phenolic Compounds of Cereals and Their Antioxidant Capacity. Critical Reviews in Food Science and Nutrition, 56(1), 25-35. https:// doi: 10.1080/10408398.2012.708909
Verma, B., Hucl, P., Chibbar, R. N. (2009). Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chemistry, 116(4), 947-954. https://doi.org/10.1016/j.foodchem.2009.03.060
Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106(2), 804-810. https://doi.org/10.1016/j.foodchem.2007.06.062
Wang, S., Zhu, F. (2017). Dietary antioxidant synergy in chemical and biological systems. Critical Reviews in Food Science and Nutrition, 57(11), 2343-2357. https://doi.org/10.1080/10408398.2015.1046546
Wang, T., He, F., Chen, G. (2014). Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods, 7, 101-111. https://doi.org/10.1016/j.jff.2014.01.033
Wang, W., Guo, J., Zhang, J., Peng, J., Liu, T., Xin, Z. (2015). Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chemistry, 171, 40-49. https://doi.org/10.1016/j.foodchem.2014.08.095
Xiang, N., Guo, X., Liu, F., Li, Q., Hu, J., Brennan, C. S. (2017). Effect of Light- and Dark-Germination on the Phenolic Biosynthesis, Phytochemical Profiles, and Antioxidant Activities in Sweet Corn (Zea mays L.) Sprouts. International journal of molecular sciences, 18(6), 1246. https://doi.org/10.3390/ijms18061246
Xu, J. G., Tian, C. R., Hu, Q. P., Luo, J. Y., Wang, X. D., Tian, X. D. (2009). Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nuda L.) during Steeping and Germination. Journal of Agricultural and Food Chemistry, 57(21), 10392-10398. https://doi.org/10.1021/jf902778j
Xu, M., Rao, J., Chen, B. (2019). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical Reviews in Food Science and Nutrition, 1-20. https://doi.org/10.1080/10408398.2018.1550051
Yang, F., Basu, T. K, Ooraikul, B. (2001). Studies on germination conditions and antioxidant contents of wheat grain. International Journal of Food Sciences and Nutrition, 52(4), 319-330. .https://doi.org/10.1080/09637480120057567
Yu, L., Zhou, K., & Parry, W. J. (2005). Inhibitory effects of wheat bran extracts on human LDL oxidation and free radicals. LWT - Food Science and Technology, 38(5), 463-470. https://doi.org/10.1016/j.lwt.2004.07.005
Zhang, J., Ding, Y., Dong, H., Hou, H., Zhang, X. (2018). Distribution of Phenolic Acids and Antioxidant Activities of Different Bran Fractions from Three Pigmented Wheat Varieties. Journal of Chemistry, 2018, 1-9. https://doi.org/10.1155/2018/6459243
Zhu, Y., Li, T., Fu, X., Abbasi, A. M., Zheng, B., Liu, R. H. (2015). Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). Journal of Functional Foods, 19, 439-450. https://doi.org/10.1016/j.jff.2015.09.053
DOI: http://dx.doi.org/10.14720/aas.2019.114.2.13
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Petra Terpinc
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941