Bound phenolic compounds of whole cereal grains as a functional food component: part two



Since they are eaten regularly, cereals based food make a significant contribution to the daily energy intake, meanwhile in whole-grain form they contribute to higher micronutrients intake that refined cereal products. The bound phenolic compounds, which are accumulated in cereal bran, play a key role in the duodenum, where they are transformed to the absorbable metabolites by microbial fermentation. In part two, an analysis of phenolic compounds is presented, with emphasis on the hydrolysis and extraction procedure for bound phenolic compounds, their quantification and identification. Due to poor bioavailability of non-extractable phenolic compounds, which critically limits the exploitation of their wide potential, the article also discusses techniques and new strategies that enable the release of phenolic compounds from insoluble bound forms during food processing. Two current approaches, germination and fermentation, are presented in more details. With transformation of bound phenolic compounds to more easily accessible free phenolic compounds, we also benefit from their antioxidant and antimicrobial efficacy in addition to a favorable anti-cancer effect on the colon. The awareness of consumers and their demand for healthier foods led to the exploration and incorporation of natural ingredients in the production of value added products. The extraction of ferulic acid from whole grain cereal products and its incorporation in functional food products is definitely an important area of future research.


whole-grain cereal products; hydrolysis of bound phenolic compounds; bioavailability of phenolic compounds; germination; fermentation; functional foods


Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55.

Alvarez-Jubete, L., Arendt, E. K., Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21(2), 106-113.

Alves, G. H., Ferreira, C. D., Vivian, P. G., Monks, J. L. F., Elias, M. C., Vanier, N. L., de Oliveira, M. (2016). The revisited levels of free and bound phenolics in rice: Effects of the extraction procedure. Food Chemistry, 208, 116-123.

Anokwuru, C., Sigidi, M., Boukandou, M., Tshisikhawe, P., Traore, A., Potgieter, N. (2018). Antioxidant Activity and Spectroscopic Characteristics of Extractable and Non-Extractable Phenolics from Terminalia sericea Burch. ex DC. Molecules, 23(6), 1303.

Antognoni, F., Mandrioli, R., Potente, G., Taneyo Saa, D. L., Gianotti, A. (2019). Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chemistry, 292, 211-216.

Arranz, S. & Saura Calixto, F. (2010). Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: A study in wheat flour and wheat bran and cereals of the diet. Journal of Cereal Science, 51(3), 313-318.

Bhanger, M. I., Iqbal, S., Anwar, F., Imran, M., Akhtar, M., Zia-ul-Haq, M. (2008). Antioxidant potential of rice bran extracts and its effects on stabilisation of cookies under ambient storage. International Journal of Food Science & Technology, 43(5), 779-786.

Boubakri, H., Jdey, A., Taamalli, A., Taamalli, W., Jebara, M., Brini, F., Riciputi, Y., Pasini, F., Christian, M., Verardo, V. (2017). Phenolic composition as measured by liquid chromatography/mass spectrometry and biological properties of Tunisian barley. International Journal of Food Properties, 20(2), 1783-1797.

Boue, S. M., Daigle, K. W., Chen, M.-H., Cao, H., Heiman, M. L. (2016). Antidiabetic Potential of Purple and Red Rice (Oryza sativa L.) Bran Extracts. Journal of Agricultural and Food Chemistry, 64(26), 5345-5353.

Cai, S., Wang, O., Wang, M., He, J., Wang, Y., Zhang, D., Zhou, F., Ji, B. (2012). In Vitro Inhibitory Effect on Pancreatic Lipase Activity of Subfractions from Ethanol Extracts of Fermented Oats (Avena sativa L.) and Synergistic Effect of Three Phenolic Acids. Journal of Agricultural and Food Chemistry, 60(29), 7245-7251.

Călinoiu, L. F. & Vodnar, D. C. (2018). Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients, 10(11), 1615. 10.3390/nu10111615

Chandrasekara, A. & Shahidi F. (2011). Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. Journal of Functional Foods, 3(3), 144-158.

Chen, P. X., Tang, Y., Zhang, B., Liu, R., Marcone, M. F., Li, X., Tsao, R. (2014). 5-Hydroxymethyl-2-furfural and Derivatives Formed during Acid Hydrolysis of Conjugated and Bound Phenolics in Plant Foods and the Effects on Phenolic Content and Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 62(20), 4754-4761.

Chen, Z., Ma, Y., Yang, R., Gu, Z., Wang, P. (2019). Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chemistry, 288, 368-376.

Chen, Z., Wang, P., Weng, Y., Ma, Y., Gu, Z., Yang, R. (2017). Comparison of phenolic profiles, antioxidant capacity and relevant enzyme activity of different Chinese wheat varieties during germination. Food Bioscience, 20, 159-167.

Costabile, A., Klinder, A., Fava, F., Napolitano, A., Fogliano, V., Leonard, C., Gibson, G. R., Tuohy, K. M. (2008). Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. British Journal of Nutrition, 99(1), 110-120. 10.1017/s0007114507793923

Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., Madani, K. (2014). Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Industrial Crops and Products, 61, 31-40.

Das, A.K., Adsare, S.R., Das, M., Kulthe, P.S., Ganesan, P. (2017). Advanced Techniques in Extraction of Phenolics from Cereals, Pulses, Fruits, and Vegetables. V M.W. Siddiqui, V. Bansal, K. Prasad (Ur), Plant Secondary Metabolites, vol 2: Stimulation, Extraction and Utilization (str. 27-76).: New York, NY: Apple Academic Press, Inc.

de Oliveira, D. M., Finger-Teixeira, A., Rodrigues Mota, T., Salvador, V. H., Moreira-Vilar, F. C., Correa Molinari, H. B., Craig Mitchell, R. A., Marchiosi, R., Ferrarese-Filho, O., Dantas dos Santos, W. (2015). Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 13(9), 1224-1232. 10.1111/pbi.12292

Dykes, L. & Rooney, W. (2007). Phenolic Compounds in Cereal Grains and Their Health Benefits. Cereal Foods World, 52, 105-111.

Domínguez-Rodríguez, G., Marina, M. L., Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography A, 1514, 1-15.

Falcinelli, B., Benincasa, P., Calzuola, I., Gigliarelli, L., Lutts, S., Marsili, V. (2017). Phenolic Content and Antioxidant Activity in Raw and Denatured Aqueous Extracts from Sprouts and Wheatgrass of Einkorn and Emmer Obtained under Salinity. Molecules, 22(12), 2132. https://doi: 10.3390/molecules22122132

Faulds, C. B. (2010). What can feruloyl esterases do for us? Phytochemistry Reviews, 9(1), 121-132.

Gan, R.-Y., Lui, W.-Y., Wu, K., Chan, C.-L., Dai, S.-H., Sui, Z.-Q., Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology, 59, 1-14.

Gangopadhyay, N., Hossain, M. B., Rai, D. K., Brunton, N. P. (2015). A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules, 20(6), 10884-10909. https://doi: 10.3390/molecules200610884

Gänzle, M. G. (2014). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2-10.

Gawlik-Dziki, U., Swieca, M., Dziki, D. (2012). Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.). Journal of Agricultural and Food Chemistry, 60(18), 4603-4612. https://doi: 10.1021/jf3011239

Gawlik-Dziki, U., Świeca, M., Dziki, D., Baraniak, B., Tomiło, J., Czyż, J. (2013). Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chemistry, 138(2), 1621-1628.

Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., Rizzello, C. G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 302, 103-113.

Golob, K. (2018). Vpliv osvetljevanja s svetlobo različnih valovnih dolžin na antioksidativni potencial kaljene pšenice : magistrsko delo.Ljubljana: Biotehniška fakulteta, Oddelek za živilstvo.

Gunenc, A., HadiNezhad, M., Farah, I., Hashem, A., Hosseinian, F. (2015). Impact of supercritical CO2 and traditional solvent extraction systems on the extractability of alkylresorcinols, phenolic profile and their antioxidant activity in wheat bran. Journal of Functional Foods, 12, 109-119.

Hemalatha, P., Bomzan, D. P., Sathyendra, Rao B. V., Sreerama, Y. N. (2016). Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities. Food Chemistry, 199, 330-338.

Hole, A. S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J., Sahlstrøm, S. (2012). Improved Bioavailability of Dietary Phenolic Acids in Whole Grain Barley and Oat Groat following Fermentation with Probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 60(25), 6369-6375.

Hübner, F. & Arendt, E. K. (2013). Germination of Cereal Grains as a Way to Improve the Nutritional Value: A Review. Critical Reviews in Food Science and Nutrition, 53(8), 853-861.

Hung, P. V., Hatcher, D. W., Barker, W. (2011). Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food Chemistry, 126(4), 1896-1901.

Irakli, M., Katsantonis, D., Kleisiaris, F. (2015). Evaluation of quality attributes, nutraceutical components and antioxidant potential of wheat bread substituted with rice bran. Journal of Cereal Science, 65, 74-80.

Irakli, M., Kleisiaris, F., Kadoglidou, K., Katsantonis, D. (2018). Optimizing Extraction Conditions of Free and Bound Phenolic Compounds from Rice By-Products and Their Antioxidant Effects. Foods, 7(6), 93.

Irakli, M. N., Samanidou, V. F., Biliaderis, C. G., Papadoyannis, I. N. (2012a). Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chemistry, 134(3), 1624-1632.

Irakli, M. N., Samanidou, V. F., Biliaderis, C. G., Papadoyannis, I. N. (2012b). Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection. Journal of Separation Science, 35(13), 1603-1611.

Katina, K., Liukkonen, K. H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S. M., Lampi, A. M., Pihlava, J. M., Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3), 348-355.

Kim, K.-H., Tsao, R., Yang, R., Cui, S. W. (2006). Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 95(3), 466-473.

Kim, M. J., Kwak, H. S., Kim, S. S. (2018). Effects of Germination on Protein, γ-Aminobutyric Acid, Phenolic Acids, and Antioxidant Capacity in Wheat. Molecules,,23(9), 2244.

Koistinen, V. M. & Hanhineva, K. (2017). Mass spectrometry-based analysis of whole-grain phytochemicals. Critical Reviews in Food Science and Nutrition, 57(8), 1688-1709. .

Konopka, I., Tańska, M., Faron, A., Czaplicki, S. (2014). Release of free ferulic acid and changes in antioxidant properties during the wheat and rye bread making process. Food Science and Biotechnology, 23(3), 831-840.

Krek, M. (2018). Vpliv osvetljevanja s svetlobo različnih valovnih dolžin na antioksidativni potencial kaljene pire : magistrsko delo. Ljubljana: Biotehniška fakulteta, Oddelek za živilstvo.

Kumar, P., Yadav, D., Kumar, P., Panesar, P. S., Bunkar, D. S., Mishra, D., Chopra, H. K. (2016). Comparative study on conventional, ultrasonication and microwave assisted extraction of γ-oryzanol from rice bran. Journal of food science and technology, 53(4), 2047-2053.

Li, F., Zhang, X., Zheng, S., Lu, K., Zhao, G., Ming, J. (2016). The composition, antioxidant and antiproliferative capacities of phenolic compounds extracted from tartary buckwheat bran (Fagopyrum tartaricum (L.) Gaerth). Journal of Functional Foods, 22, 145-155.

Liyana-Pathirana, C. M. & Shahidi, F. (2006). Importance of Insoluble-Bound Phenolics to Antioxidant Properties of Wheat. Journal of Agricultural and Food Chemistry, 54(4), 1256-1264.

Liyana-Pathirana, C. M. & Shahidi, F. (2007). The antioxidant potential of milling fractions from breadwheat and durum. Journal of Cereal Science, 45(3), 238-247.

Ma, Y., Wang, P., Wang, M., Sun, M., Gu, Z., Yang, R. (2019). GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chemistry, 270, 593-601.

Madhujith, T. & Shahidi, F. (2007). Antioxidative and Antiproliferative Properties of Selected Barley (Hordeum vulgarae L.) Cultivars and Their Potential for Inhibition of Low-Density Lipoprotein (LDL) Cholesterol Oxidation. Journal of Agricultural and Food Chemistry, 55(13), 5018-5024. .

Mir, N. A., Riar, C. S., Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science & Technology, 75, 170-180.

Montemurro, M., Pontonio, E., Gobbetti, M., Rizzello, C. G. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology, 302, 47-58.

Moore, J., Cheng, Z., Hao, J., Guo, G., Liu, J.-G., Lin, C., Yu, L. (2007). Effects of Solid-State Yeast Treatment on the Antioxidant Properties and Protein and Fiber Compositions of Common Hard Wheat Bran. Journal of Agricultural and Food Chemistry, 55(25), 10173-10182.

Musa-Veloso, K., Poon, T., Harkness, L. S., O'Shea, M., Chu, Y. (2018). The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 108(4), 759-774.

Niroula, A., Khatri, S., Khadka, D., Timilsina, R. (2019). Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses. International Journal of Food Properties, 22(1), 427-437.

Oghbaei, M.& Prakash, J. (2016). Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food & Agriculture, 2(1), 1136015.

Oliveira, D. M., Mota, T. R., Oliva, B., Segato, F., Marchiosi, R., Ferrarese-Filho, O., Faulds, C. B., dos Santos, W. D. (2019). Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology, 278, 408-423.

Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240, 212-221.

Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., Peñas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology, 76, 236-244.

Phan, M. A. T., Paterson, J., Bucknall, M., Arcot, J. (2018). Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Critical Reviews in Food Science and Nutrition, 58(8), 1310-1329.

Pradeep, P. M., Sreerama, Y. N. (2017). Soluble and bound phenolics of two different millet genera and their milled fractions: Comparative evaluation of antioxidant properties and inhibitory effects on starch hydrolysing enzyme activities. Journal of Functional Foods, 35, 682-693.

Price, R. K., Wallace, J. M. W., Hamill, L. L., Keaveney, E. M., Strain, J. J., Parker, M. J., Welch, R. W. (2012). Evaluation of the effect of wheat aleurone-rich foods on markers of antioxidant status, inflammation and endothelial function in apparently healthy men and women. British Journal of Nutrition, 108(9), 1644-1651.


Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 58(15), 2531-2548. .

Serpen, A., Capuano, E., Fogliano, V., Gökmen, V. (2007). A New Procedure To Measure the Antioxidant Activity of Insoluble Food Components. Journal of Agricultural and Food Chemistry, 55(19), 7676-7681.

Serpen, A., Gökmen, V., Mogol, B. A. (2012). Effects of different grain mixtures on Maillard reaction products and total antioxidant capacities of breads. Journal of Food Composition and Analysis, 26(1), 160-168.

Shi, J., Shan, S., Li, Z., Li, H., Li, X., Li, Z. (2015). Bound polyphenol from foxtail millet bran induces apoptosis in HCT-116 cell through ROS generation. Journal of Functional Foods, 17, 958-968.

Singh, A. & Sharma, S. (2017). Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Critical Reviews in Food Science and Nutrition, 57(14), 3051-3071.

Singh, A. K., Rehal, J., Kaur, A., Jyot, G. (2015). Enhancement of Attributes of Cereals by Germination and Fermentation: A Review. Critical Reviews in Food Science and Nutrition, 55(11), 1575-1589.

Slavin, J. (2003). Why whole grains are protective: biological mechanisms. Proceedings of the Nutrition Society, 62(1), 129-134.

Šulniūtė, V., Jaime, I., Rovira, J., Venskutonis, P. R. (2016). Rye and Wheat Bran Extracts Isolated with Pressurized Solvents Increase Oxidative Stability and Antioxidant Potential of Beef Meat Hamburgers. Journal of Food Science, 81(2), H519-H527.

Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., Tsao, R. (2016). Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects. Journal of Agricultural and Food Chemistry, 64(8), 1712-1719.

Terpinc, P., Abramovič, H. (2010). A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chemistry, 121(2), 366-371.

Terpinc, P., Cigić, B., Polak, T., Hribar, J., Požrl, T. (2016). LC–MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chemistry, 210, 9-17.

Terpinc, P., Polak, T., Poklar Ulrih, N., Abramovič, H. (2011). Effect of Heat Treatment of Camelina (Camelina sativa) Seeds on the Antioxidant Potential of Their Extracts. Journal of Agricultural and Food Chemistry, 59(16), 8639-8645.

Terpinc, P., Polak, T., Šegatin, N., Hanzlowsky, A., Ulrih, N. P., Abramovič, H. (2011). Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chemistry, 128(1), 62-69.

Ti, H., Zhang, R., Zhang, M., Li, Q., Wei, Z., Zhang, Y., Tang, X., Deng, Y., Liu, L., Ma, Y. (2014). Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chemistry, 161, 337-344.

Van Hung, P. (2016). Phenolic Compounds of Cereals and Their Antioxidant Capacity. Critical Reviews in Food Science and Nutrition, 56(1), 25-35. https:// doi: 10.1080/10408398.2012.708909

Verma, B., Hucl, P., Chibbar, R. N. (2009). Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chemistry, 116(4), 947-954.

Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106(2), 804-810.

Wang, S., Zhu, F. (2017). Dietary antioxidant synergy in chemical and biological systems. Critical Reviews in Food Science and Nutrition, 57(11), 2343-2357.

Wang, T., He, F., Chen, G. (2014). Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods, 7, 101-111.

Wang, W., Guo, J., Zhang, J., Peng, J., Liu, T., Xin, Z. (2015). Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chemistry, 171, 40-49.

Xiang, N., Guo, X., Liu, F., Li, Q., Hu, J., Brennan, C. S. (2017). Effect of Light- and Dark-Germination on the Phenolic Biosynthesis, Phytochemical Profiles, and Antioxidant Activities in Sweet Corn (Zea mays L.) Sprouts. International journal of molecular sciences, 18(6), 1246.

Xu, J. G., Tian, C. R., Hu, Q. P., Luo, J. Y., Wang, X. D., Tian, X. D. (2009). Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nuda L.) during Steeping and Germination. Journal of Agricultural and Food Chemistry, 57(21), 10392-10398.

Xu, M., Rao, J., Chen, B. (2019). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical Reviews in Food Science and Nutrition, 1-20.

Yang, F., Basu, T. K, Ooraikul, B. (2001). Studies on germination conditions and antioxidant contents of wheat grain. International Journal of Food Sciences and Nutrition, 52(4), 319-330. .

Yu, L., Zhou, K., & Parry, W. J. (2005). Inhibitory effects of wheat bran extracts on human LDL oxidation and free radicals. LWT - Food Science and Technology, 38(5), 463-470.

Zhang, J., Ding, Y., Dong, H., Hou, H., Zhang, X. (2018). Distribution of Phenolic Acids and Antioxidant Activities of Different Bran Fractions from Three Pigmented Wheat Varieties. Journal of Chemistry, 2018, 1-9.

Zhu, Y., Li, T., Fu, X., Abbasi, A. M., Zheng, B., Liu, R. H. (2015). Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). Journal of Functional Foods, 19, 439-450.



  • There are currently no refbacks.

Copyright (c) 2019 Petra Terpinc

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941