Somatic embryogenesis of hypocotyl derived calli from an eggplant cultivar

Hajar SABET, Mahmood MALEKI, Maryam ABDOLI NASAB, Saeid MIRZAEI

Abstract


Optimization of tissue culture and regeneration conditions of eggplant is necessary for achieving different goals such as gene transformation and the development of somaclonal variations. In this study, hypocotyl explants ware used to produce callus in a medium containing different concentrations of NAA and BAP. Moreover, the concentration of the elements Ca, Mn, Mg, Fe and K were measured and analysed between embryogenic and non-embryogenic calli. For shoot elongation, embryogenic calli were transferred to a new culture medium containing 3.5, 4 and 4.5 mg l-1 BAP plus 2 mg l-1 GA3. Finally, produced shoots were rooted in a culture medium containing 1, 1.5 and 2 mg l-1 NAA. Results showed that the best treatment for the embryogenic callus induction was MS medium containing 0.5 mg l-1 BAP plus 0.25 mg l-1 NAA. Two elements, Fe and K, had the highest amount in non-embryogenic calli compare to the embryogenic one. For plant regeneration, MS medium containing 4.5 mg l-1 BAP plus 2 mg l-1 GA3 and 2 mg l-1 NAA were the best treatments for shooting and rooting, respectively. In this study, the best treatments for plant regeneration produced 35 shoots from an explant with 92 % shooting. This regeneration protocol could be useful for gene transformation and micro-propagation studies.


Keywords


eggplant; tissue culture; somatic embryogenic regeneration; BAP; NAA

Full Text:

PDF

References


Aminifard, M. H., Aroiee, H., Fatemi, H., Ameri, A. & Karimpour, S. (2010). Responses of eggplant (Solanum melongena L.) to different rates of nitrogen under field conditions. Journal of Central European Agriculture, 11(4), 453-458. https://doi.org/10.5513/JCEA01/11.4.863

Bridgen, M. P., Van Houtven, W., & Eeckhaut, T. (2018). Plant Tissue Culture Techniques for Breeding. Ornamental Crops. Springer, 127-144. https://doi.org/10.1007/978-3-319-90698-0_6

Corral-Martínez, P., & Seguí-Simarro, J. M. (2012). Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica, 187, 47-61. https://doi.org/10.1007/s10681-012-0715-z

Chakravarthi, D., Rao, Y., Rao, M., & Manga, V. (2010). Genetic analysis of in vitro callus and production of multiple shoots in eggplant. Plant Cell, Tissue and Organ Culture (PCTOC), 102, 87-97. https://doi.org/10.1007/s11240-010-9709-5

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1-42. https://doi.org/10.2307/3001478

Foo, P. C., Lee, Z. H., Chin, C. K., Subramaniam, S., & Chew, B. L. (2018). Shoot Induction in White Eggplant (Solanum melongena ‘Bulat Putih’) using 6-Benzylaminopurine and Kinetin. Tropical Life Sciences Research, 29, 119. https://doi.org/10.21315/tlsr2018.29.2.9

Franklin, G., Sheeba, C., & Sita, G. L. (2004). Regeneration of eggplant (Solanum melongena L.) from root explants. In Vitro Cellular & Developmental Biology-Plant, 40, 188-191. https://doi.org/10.1079/IVP2003491

Gandonou, C., Errabii, T., Abrini, J., Idaomar, M., Chibi, F., & Senhaji, S. (2005). Effect of genotype on callus induction and plant regeneration from leaf explants of sugarcane (Saccharum sp.). African Journal of Biotechnology, 4.

Hoque, M. E., & Mansfield, J. W. (2004). Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of Indica rice genotypes. Plant Cell, Tissue and Organ Culture, 78, 217-223. https://doi.org/10.1023/B:TICU.0000025640.75168.2d

Igarashi, K., Yoshida, T., & Suzuki, E. (1993). Antioxidative activity of nasunin in chouja-nasu (little eggplant, Solanum melongena L.’chouja’). Nippon Shokuhin Kogyo Gakkaishi, 40, 138-143. https://doi.org/10.3136/nskkk1962.40.138

Kaur, M., Dhatt, A. S., Sandhu, J. S., Sidhu, A. S., & Gosal, S. S. (2013). Effect of media composition and explant type on the regeneration of eggplant (Solanum melongena L.). African Journal of Biotechnology, 12.

Magioli, C., & Mansur, E. (2005). Eggplant (Solanum melongena L.): tissue culture, genetic transformation and use as an alternative model plant. Acta Botanica Brasilica, 19, 139-148. https://doi.org/10.1590/S0102-33062005000100013

Mallaya, N. P., & Ravishankar, G. (2013). In vitro propagation and genetic fidelity study of plant regenerated from inverted hypocotyl explants of eggplant (Solanum melongena ‘Arka Shirish’. Biotech, 3, 45-52. https://doi.org/10.1007/s13205-012-0068-2

Michalojc, Z., & Buczkowska, H. (2008). Content of macroelements in eggplant fruits depending on nitrogen fertilization and plant training method. Journal of Elementology, 13.

Mir, K., Dhatt, A., Sandhu, J., & Sidhu, A. (2011). Effect of genotype, explant and culture medium on organogenesis in brinjal. Indian Journal of Horticulture, 68, 332-335.

Park, S. U., & Facchini, P. J. (2000). Agrobacterium rhizogenes‐mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. Journal of Experimental Botany, 51, 1005-1016. https://doi.org/10.1093/jexbot/51.347.1005

Portis, E., Lanteri, S., Barchi, L., Portis, F., Valente, L., Toppino, L., Rotino, G. L., et al. (2018). Comprehensive characterization of simple sequence repeats in eggplant (Solanum melongena L.) genome and construction of a web resource. Frontiers in Plant Science, 9, 401. https://doi.org/10.3389/fpls.2018.00401

Rahman, M., Asaduzzaman, M., Nahar, N., & Bari, M. (2006). Efficient plant regeneration from cotyledon and midrib derived callus in eggplant (Solanum melongena L.). Journal of Bio-Science, 14, 31-38. https://doi.org/10.3329/jbs.v14i0.439

Ray, B. P., Hassan, L., & Sarker, S. K. (2011). In vitro cultivation and regeneration of Solanum melongena L. using stem, root and leaf explants. Nepal Journal of Biotechnology, 1, 49-54. https://doi.org/10.3126/njb.v1i1.4172

Rivas-Sendra, A., Corral-Martínez, P., Camacho-Fernández, C., & Seguí-Simarro, J. M. (2015). Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell, Tissue and Organ Culture (PCTOC), 122, 759-765. https://doi.org/10.1007/s11240-015-0791-6

Satish, L., Rameshkumar, R., Rathinapriya, P., Pandian, S., Rency, A. S., Sunitha, T., & Ramesh, M. (2015). Effect of seaweed liquid extracts and plant growth regulators on in vitro mass propagation of brinjal (Solanum melongena L.) through hypocotyl and leaf disc explants. Journal of Applied Phycology, 27, 993-1002. https://doi.org/10.1007/s10811-014-0375-6

Schween, G., & Schwenkel, H. G. (2003). Effect of genotype on callus induction, shoot regeneration, and phenotypic stability of regenerated plants in the greenhouse of Primula ssp. Plant Cell, Tissue and Organ Culture, 72, 53-61. https://doi.org/10.1023/A:1021227414880

Shivaraj, G., & Rao, S. (2011). Rapid and efficient plant regeneration of eggplant (Solanum melongena L.) from cotyledonary leaf explants. Indian Journal of Biotechnology, 10, 125-129.

Zale, J. M., Borchardt-Wier, H., Kidwell, K. K., & Steber, C. M. (2004). Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell, Tissue and Organ Culture, 76, 277-281. https://doi.org/10.1023/B:TICU.0000009248.32457.4c

Zayova, E., Nikova, V., Ilieva, K., & Philipov, P. (2008). Callusogenesis of eggplant (Solanum melongena L.). Comptes Rendus De L Academie Bulgare Des Sciences, 61, 1485-1490.




DOI: http://dx.doi.org/10.14720/aas.2020.115.1.1314

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mahmood Maleki, Mahmood Maleki

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY-NC-ND 4.0 License.

                            


ISSN 1581-9175     eISSN 1854-1941