Cytogenetic and molecular studies on two faba bean cultivars revealed their difference in their aluminum tolerance

Ahmed M. HASSANEIN, Ahmed h. MOHAMED, Heba Ahmed ABD ALLAH, Hoida ZAKI

Abstract


Two cultivars of faba bean (Vicia faba ‘Giza 843’ and ‘Nobaria 3’) that differ in aluminum (Al) tolerance were used to study cytogenetic and genomic alterations under the influence of Al Cl3 (5, 15, and 25 mmol AlCl3) for different periods (6, 12 and 24 h). Under Al treatments, mitotic index in both cultivars decreased and total chromosomal abnormalities increased. The frequencies of micronuclei and chromosomal abnormalities (C-anaphase, metaphase-star chromosomes, breaks, sticky and disturbed chromosomes during metaphase or anaphase) in ‘Giza 843’ were lower than in ‘Nabaria 3’. Increase of the registered cytogenetic events under the influence of Al stress led to increase the detected polymorphism using RAPD and ISSR markers. Application of RAPD primers gave the same value of polymorphism in both faba bean cultivars under Al stress. Polymorphism average of nine ISSR primers of ’Giza 843’ (65.36 %) was lower than that of ‘Nobaria 3’ (71.59 %). Molecular markers, cytogenetic characteristics and seedling growth data indicate that Al tolerance of ‘Giza 843’ was higher than of ‘Nobaria 3’. This work shows that cytogenetic and ISSR techniques could be used efficiently to distinguish between the ability of two faba bean cultivars to tolerate toxic effects of Al.


Keywords


aluminum tolerance; Vicia faba L.;chromosomal abnormalities; cytogenetics; RAPD, ISSRaas.2020.116.2.1346

Full Text:

PDF

References


Abdelhamid M. T., Shokr M. M. B. & Bekheta M. A. (2010). Growth, root characteristics, and leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance and the soil properties in relation to salinity. Communication Soil Science of Plant Analysis, 41, 2713–2728. https://doi.org/10.1080/00103624.2010.518263

Abdel-Razzak H. S., Alfrmawy A. M., Ibrahim H. M. & El-Hanafy A. A. (2012). Genetic diversity in faba bean (Vicia faba L.) using Inter-Simple Sequence Repeat (ISSR) markers and protein analysis. Life Science Journal, 9, 497-503.

Achary V. M. M. & Panda B. B. (2010). Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis, 25(2), 201-209. https://doi.org/10.1093/mutage/gep063

Altwaty N. H., El-Sayed O. E., Aly N. A. H., Baeshen M. N. & Baeshen N. A. (2016). Molecular and cytogenetic assessment of Dipterygium glaucum genotoxicity. Anais da Academia Brasileira de Ciências, 88, 623–634. https://doi.org/10.1590/0001-3765201620150208

Aroca, R.; Porcel, R. & Ruiz-Lozano, J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytolologist, 173, 808–816. https://doi.org/10.1111/j.1469-8137.2006.01961.x

Begum K. N. & Alam S. S. (2017). Karyotype, RAPD and ISSR analysis of four specimens in Gynura nepalensis DC. Cytologia, 82(4), 423–428. https://doi.org/10.1508/cytologia.82.423

Belachew, K.Y. & Stoddard, F. L. (2017). Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses. PeerJ. 5, e2963. https://doi.org/10.7717/peerj.2963

Bennet R. J. & Breen CM (1991). The aluminium signal: New dimensions to mechanisms of aluminium tolerance. Plant Soil, 134, 153–166. https://doi.org/10.1007/BF00010728

Darlington C. D. & La Cour L. F. (1976). The handling of chromosomes, 6th ed. George Allen and Unwin Ltd., London.

De Campos J. M. S. & Viccini L. F. (2003) Cytotoxicity of aluminum on meristematic cells of Zea mays and Allium cepa. Caryologia, 56, 65–73. https://doi.org/10.1080/00087114.2003.10589309

Domingues A. M., da Silva F., Freitas G., Ganança G. F., Nóbrega H., Slaski J. J. & de Carvalho M. A. P. (2013). Aluminium tolerance in bean traditional cultivars from Madeira. Revista de Ciências Agrárias, 36(2), 148-156.

Duc G, Bao SY, Baum M & Redden B. (2010). Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Research, 115, 270-278. https://doi.org/10.1016/j.fcr.2008.10.003

Fenech M. (2008). The micronucleus assay determination of chromosomal level DNA damage. Methods of Molecular Biology, 410, 185-216. https://doi.org/10.1007/978-1-59745-548-0_12

Gopalan, H.N.B. 1999. Ecosystem health and human wellbeing: the mission of the International Program on Plant Bioassays. Mutation Research, 426, 99–102. https://doi.org/10.1016/S0027-5107(99)00048-2

Hartig K. & Beck E. (2006). Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biology, 8, 389–396. https://doi.org/10.1055/s-2006-923797

Hassanein A. M., Salem J. M., Faheed F. A. & El-nagish A. (2018). Effect of anti-ethylene compounds on isoenzyme patterns and genome stability during long term culture of Moringa oleifera. Plant Cell Tissue Organ Culture, 132, 201–212. https://doi.org/10.1007/s11240-017-1326-0

Hossain, A., Afroz, M., Sultana, S. S. & Alam S.S. (2017). Karyotype and RAPD Diversity in Four Varieties of Gossypium hirsutum L. Cytologia, 82(5), 535–541. https://doi.org/10.1508/cytologia.82.535

Kanaya N. 1., Gill B. S., Grover I. S., Murin A., Osiecka R., Sandhu S. S. & Andersson H. C. (1994). Vicia faba chromosomal aberration assay. Mutation Research, 310(2), 231-247. https://doi.org/10.1016/0027-5107(94)90116-3

Karimaei M. & Poozesh V. (2016). Effects of aluminum toxicity on plant height, total chlorophyll (Chl a+b), potassium and calcium contents in spinach (Spinacia oleracea L.). International Journal of Farming and Allied Sciences, 5(2), 76-82.

Kotelnikova A., Fastovets I., Rogova O., Volkov D. S. & Stolbova V. (2019). Toxicity assay of lanthanum and cerium in solutions and soil. Ecotoxicology and Environmental Safety, 167, 20-28. https://doi.org/10.1016/j.ecoenv.2018.09.117

Kumar G. & Rai P. (2006). Partial genome elimination through micronuclei in soybean (Glycine max). National Academy Science Letters, 29, 417–421.

Legendre L. & Legendre P. (1983). Numerical ecology: developments in environmental modelling. Amsterdam, The Netherlands, pp 419. https://doi.org/10.1007/978-3-642-69024-2_56

Link W., Dexkins C.,, 3. Elsevier,

Singh M., Schwall M. & Melschinmer A. E. (1995). Genetic diversity in European and Mediterranean faba beans germplasm revealed by RAPD markers. Theoretical and Applied Genetics, 90, 27-32. https://doi.org/10.1007/BF00220992

Llugany M., Poschenrieder C. & Barcelo J. (1995). Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity. Physiologia Plantarum, 93, 265–271. https://doi.org/10.1111/j.1399-3054.1995.tb02227.x

Matsumoto H., Hirasawa E., Torikai H. & Takahashi E. (1976). Localization of absorbed Al in pea root and its binding to nucleic acids. Plant and Cell Physiology, 17(1),127-137. https://doi.org/10.1093/oxfordjournals.pcp.a075252

May H. M. & Nordstrom D. K. (1991). Assessing the solubilities and reaction kinetics of aluminous minerals in soils. In: Soil acidity. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 125–148. https://doi.org/10.1007/978-3-642-74442-6_6

Mohandas T. & Grant W. F. (1972). Cytogenetic effects of 2,4-d and amitrole in relation to nuclear volume and DNA content in some higher plants. Canadian Journal of Genetics and Cytology, 14(4), 773-783. https://doi.org/10.1139/g72-095

Mohanty S., Das A., Das P. & Mohanty P. (2004). Effect of a low dose of aluminum on mitotic and meiotic activity, 4C DNA content, and pollen sterility in rice, Oryza sativa L. cv. Lalat. Ecotoxicology and Environmental Safety, 59, 70–75. https://doi.org/10.1016/j.ecoenv.2003.07.017

Muktadir M. A., Adhikari K. N., Merchant A., Belachew K.Y., Vandenberg A., Stoddard F. L. & Khazaei H. (2020). Physiological and Biochemical Basis of Faba Bean Breeding for Drought Adaptation. Agronomy, 10, 1345; https://doi.org/10.3390/agronomy10091345

Porebski S., Bailey L. G. & Baum B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reports, 15, 8–15. https://doi.org/10.1007/BF02772108

Rengel Z. (1996). Uptake of aluminium by plant cells. New Phytologist, 134, 389–406. https://doi.org/10.1111/j.1469-8137.1996.tb04356.x

Richard S. & Peter H. (2007). Community Analysis Package 4.0. Searching for structure in community data. Printed in Lymington, UK.

Rost T. L. & Morrison S. L. (1984). The comparative cell cycle and metabolic effects of chemical treatments on root tips meristems. II. Propham, chloropropham and 2,4-dinitophenol. Cytologia, 49, 61-72. https://doi.org/10.1508/cytologia.49.61

Rout G. R., Samantaray S. & Das P. (2001). Aluminium toxicity in plants: a review. Agronomie, 21, 3–21. https://doi.org/10.1051/agro:2001105

Ryan P., Ditomaso J. M. & Kochian V. (1993). Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. Journal of Experimental Botany, 44 (2), 437–446. https://doi.org/10.1093/jxb/44.2.437

Salem J. & Hassanein A. M. (2017). In vitro propagation, microtuberization, and molecular characterization of three potato cultivars. Biologia Plantarum, 61, 427–437. https://doi.org/10.1007/s10535-017-0715-x

Sivaguru M. & Horst W. J. (1998). The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiology, 116, 155–163. https://doi.org/10.1104/pp.116.1.155

Souguir D, Ferjani E, Ledoigt G, Goupil P (2011) Sequential effects of cadmium on genotoxicity and lipoperoxidation in Vicia faba roots. Ecotoxicology, 20, 329–336. https://doi.org/10.1007/s10646-010-0582-0

Suso M. J., Gilsanz S., Duc G., Marget P. & Moreno M. T. (2006). Germplasm management of faba bean (Vicia faba L.): Monitoring intercrossing between accessions with inter-plot barriers. Genetic Resources and Crop Evolution, 53, 1427-1437. https://doi.org/10.1007/s10722-005-6844-7

Taspinar M. S., Aydin M., Sigmaz B., Yagci S., Arslan E. & Guleray Agar G. (2018). Aluminum-Induced Changes on DNA Damage, DNA Methylation and LTR Retrotransposon Polymorphism in Maize. Arab Journal of Science and Engineering. 43:123–131. https://doi.org/10.1007/s13369-017-2697-6

Thawornwong N. & Van Diest A. (1974). Influences of high acidity and aluminum on the growth of lowland rice. Plant and Soil, 41 (1), 141–159. https://doi.org/10.1007/BF00017951

Van’t Hoff J. (1985). Control points within cell cycle. In: The cell division cycle in plants. Edited by: J.A. Bryant and Francis, D. SEB Seminar series 26. Cambridge University Press. Pp 1-13.

Yi M., Yi H., Li H. & Wu L. (2010). Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. Environmental Toxicology, 25, 124–129. https://doi.org/10.1002/tox.20482

Zhang H. M., Zhang S. S., Meng Q. M., Zou J., Jiang W. S. & Liu D. H. (2009.) Effects of aluminum on nucleoli in root tip cells, root growth and the antioxidant defense system in Vicia faba L. ACTA BIOLOGICA CRACOVIENSIA Series Botanica, 51(2), 99-10.




DOI: http://dx.doi.org/10.14720/aas.2020.116.2.1346

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Ahmed Hassanein

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941