Assessment genetic diversity of einkorn genotypes (Triticum monococcum L.) by gliadin electrophoresis

Gergana Nikolova DESHEVA, Bozhidar KYOSEV, Manol DESHEV

Abstract


The genetic diversity of gliadins in twenty two einkorn accessions preserved under long-term seed storage condition in the National gene bank of Bulgaria were evaluated, using acid polyacrylamide-gel electrophoresis (Acid-PAGE). In total, 64 polymorphic bands and 22 gliadin patterns were identified. Thirty four different mobility bands and 21 gliadin patterns were identified in the ω-gliadin zone, 12 bands and 16 patterns were noted in the γ-gliadins, 17 patterns and 12 mobility bands were found for β-gliadins and six bands with five different α -gliadin patterns were determined. The genetic diversity index (H) was the highest for ω-gliadins (0.950), followed by β-gliadins (0.924) and γ- (0.914), respectively and the lowest value was detected in α-gliadin patterns (0.120). Cluster analysis based on the UPGMA method and Nei and Li similarity coefficients classified all the genotypes into 3 main groups. No relationships between genetic diversity, geographic origin and the genotypes were observed. The results of cluster analysis justify the high level of genetic variation among investigated einkorn accessions.


Keywords


A-PAGE electrophoresis; einkorn; genetic diversity; gliadins

Full Text:

PDF

References


Ahmadi, J., & Pour-Aboughadareh, A. (2015). Allelic variation of glutenin and gliadin genes in Iranian einkorn wheat. Journal of Biodiversity and Environmental Sciences, 7(5), 168-179.

Aliyeva, A., Ojaghi, J., Mehdiyeva, S. (2012). Electrophoretic profiles of gliadin subunits to evaluate genetic diversity of Azerbaijan synthetic branched spike wheat accessions. American-Eurasian Journal Agricultural and Environmental Science, 12(10), 1343-1349. https://www.idosi.org/aejaes/jaes12(10)12/13.pdf

Alvarez, J. B., Moral, A., Martín, L. M. (2006). Polymorphism and genetic diversity for the seed storage proteins in spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum). Genetic Resources and Crop Evolution, 53(5), 1061-1067. https://link.springer.com/article/10.1007/s10722-004-7940-9

Alvarez, J. B., & Guzmán, C. (2013). Spanish ancient wheats: A genetic resource for wheat quality breeding. Advance in Crop Science and Technology, 1, 101. https://doi:10.4172/acst.1000101

Anonymous. 2003. Protocol for distinctness, uniformity and stability tests. Barley. CPVO-TP 19/2; 06/11/2003, EU Community plant variety office, Angers.

Anjum, F. M., Lookhart, G., Walker, C. E. (2000). Electrophoretic identification of hard white spring wheats grown at different location in Pakistan in different years. Journal of the Science of Food and Agriculture, 80(8), 1155 – 1161. https://doi.org/10.1002/1097-0010(200006)80:8<1155::AID-JSFA587>3.0.CO;2-J

Branlard, G., Dardevet, M., Saccomano, R., Lagoutte, F., Gourdon, J. (2001). Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 119(1-2), 59–67. https://doi: 10.1023/A:1017586220359

Branlard, G., (2004). Genetic determination of protein quality in wheat grain. International Workshop, Modelling quality traits and their genetic variability for Wheat, 18-21 July 2004, Clermont-Ferrand, France.

Bushuk, W., & Zillman, R. R. (1978). Wheat cultivars identification by gliadin electrophoregrams. I.Apparatus, method and nomenclature. Canadian Journal of Plant Science, 58, 505-515. https://doi.org/10.4141/cjps78-076

Bushuk, W., & Sapirstein, H. D. (1991). Modefied nomenclature for gliadins. In: W. Bushuk & R. Tkachuk (Eds.), Gluten Proteins 1990, American Association of Cereal Chemists, (pages 454-458) Inc.,St. Paul, MN.

Chernakov, V.M., & Metakovsky, E.V. (1994). Allelic variation at the gliadin-coding loci and evaluation of genetic similarity of common wheat cultivars bred in different breeding centers. Genetika, 30, 509-517.

Ciaffi, M., Dominici, L., Lafiandra, D. (1997). Gliadin polymorphism in wild and cultivated einkorn wheats. Theoretical Applied Genetics, 94, 68-74. https://doi: 10.1007/s001220050383

D’Ovidio, R., & Masci, S. (2004). The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science, 39, 321-339. https://www.sciencedirect.com/science/article/pii/S0733521003001140

Dachkevitch, T., Redaelli, R., Biancardi, A. M., Metakovsky, E. V., Pogna, N. E. (1993). Genetics of gliadins coded by the group 1 chromosomes in the high-quality bread wheat cultivar Neepawa. Theoretical and Applied Genetics, 86(2-3), 389-399. https://link.springer.com/article/10.1007/BF00222107

Draper, S. R. (1987). ISTA and 1987 Variety Committee. Report of the working group for biochemical tests for cultivar identification 1983–1986. Seed Science and Technology, 15, 431–437.

Dziuba, M., Nałęcz, D., Szerszunowicz, I., Waga, J. (2014). Proteomic analysis of wheat α/A- and β-gliadins. Czech Journal of Food Science, 32, 437-442. https://www.agriculturejournals.cz/publicFiles/133171.pdf. https://doi.org/10.17221/600/2013-CJFS

Engles, J. M. M., Rao, V. R., Brown, A. H. D., Jackson, M. T. (2002). Managing plant genetic diversity, pp: 487. CABI Publishing, UK. ISSN 1818-6769, https://doi: 10.5829/idosi.aejaes.2012.12.10.6680

Kawaura, K., Mochida, K., Ogihara, Y. (2005). Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant Physiology, 139, 1870-1880. http://www.plantphysiol.org/content/139/4/1870. https://doi.org/10.1104/pp.105.070722

Khabiri, T., Zakaria A. R., Zare, N., Sofalian, O. (2013): Assessing genetic diversity based on gliadin proteins in Aegilops cylindrica populations from northwest of Iran. Notulae Scientia Biologicae, 5, 109–113. http://doi:10.15835/nsb.5.1.8329

Konarev, V. G. (1983). Plant proteins cat genetic markers. Kolos, Moscow.

Kuktaite, R. (2004). Protein quality in wheat: changes in protein polymer composition during grain development and dough processing. Department of crop sciences Alnarp.

Long, H., Wei, Y., Yan, Z., H., Baum, B., Nevo, E., Zheng, Y. L. (2005). Classification of wheat low molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theoretical and Applied Genetics, 111, 1251-1259. https://www.ncbi.nlm.nih.gov/pubmed/16187122. https://doi.org/10.1007/s00122-005-0024-1

Lookhart, G., Jones, B., Walker, D., Hall, S., Cooper, D. (1983). Computer-assisted method for identifying wheat cultivars from their gliadin electrophoregrams. Cereal Chemistry, 60(2), 111-115.

Ma, X., Chen, Sh., Zhang, X., Bai, Sh., Zhang, C. (2012). Assessment of worldwide genetic diversity of Siberian wild rye (Elymus sibiricus L.) germplasm based on gliadin analysis. Molecules, 17, 4424-4434. http://doi:10.3390/molecules17044424

Meintjes, G. D. (2004). The used HPLC for quality predriction of South African wheat cultivars. University of Free State Bloemfontein.

Metakovsky, E. V., & Branlard, G. (1998). Genetic diversity of French common wheat germplasm based on gliadin alleles. Theoretical and Applied Genetics, 96, 209-218. https://doi:10.1007/s001220050729

Metakovsky, E. V., Branlard, G., Chernakov, V. M., Upelniek, V. P., Redaelli, R. E. (1997b). Recombination mapping of some chromosome 1A-, 1B-, 1D- and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat. Theoretical and Applied Genetics, 94(6-7), 788-795. https://doi.org/10.1007/s001220050479

Metakovsky, E. V., Gómez, M., Vázquez, J. F., Carrillo, J. M. (2000). High genetic diversity of Spanish common wheats as judged from gliadin alleles. Plant Breeding, 119, 37. https://doi.org/10.1046/j.1439-0523.2000.00450.x

Metakovsky, E. V., & Novoselskaya, A. (1991). Gliadin allele identification in common wheat. Journal of Genetics & Breeding, 45, 317-344.

Metakovsky, E. V., Aniechiarico, P., Boggini, G., Pogna, N. (1997a). Relationship between gliadin alleles and dough strength in Italian bread wheat cultivars. Journal of Cereal Science, 25, 226-229. https://doi.org/10.1006/jcrs.1996.0088

Metakovsky, E. V., Chernakov, V., Pogna, N., Bushuk, W. (1993). Gliadin alleles in Canadian western red spring wheat cultivars: use of two different procedures of acid polyacrylamide gel electrophoresis for gliadin seperation. Genome, 36, 743-749. https://doi:10.1139/g93-099

Metakovsky, E. V., Knežević, D., Javornik, B. (1991). Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica, 54, 285–295. https://doi.org/10.1007/BF00023005

Metakovsky, E. V., Pogna, N., Biancardi, A., Redaelli, R. (1994). Gliadin allele composition of common wheat cultivars grown in Italy. Journal of Genetics & Breeding, 48, 55-66.

Metakovsky, E. V., & Sozinov, A. A. (1987). Organization variability and stability of the family of the gliadin-coding genes in wheat: genetic data. Proceeding of the 3rd Internat. Workshop on Gluten Proteins, Budapest Hungary, May 9-12, 30-45(ed. R. Lasztity, F. Bekes), World Scientific.

Metakovsky, E. V, Akhmedov, M. G., Sozinov, A. A. (1986). Genetic analysis of gliadin-encoding genes reveals gene clusters as well as single remote genes. TAG, 73, 278-285. https://doi.org/10.1007/BF00289286

Metakovsky, E. V, Novoselskaya, A., Yu, Sozinov, A. A. (1984). Genetic analysis of gliadin components in winter wheat using two-dimensional Polyaclylamide gel electrophoresis. Teoretical Applied Genetics, 69, 31-37. https://doi.org/10.1007/BF00262533

Metakovsky, E., Melnik, V., Rodriguez-Quijano, M., Upelniek, V., Carrillo, J. M. (2018). A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm. The Crop Journal, 6, 628-641. https://doi.org/10.1016/j.cj.2018.02.003

Metakovsky, E. V., & Baboev, S. K. (1992). Polymorphism and inheritance of gliadin polypeptides in T. monococcum L. Theoretical and Applied Genetics, 84, 971-978. https://doi.org/10.1007/BF00227412

Mohd, S., Alam, Z., Zahir, A., Waqar, A., Taufiq, A., Khan, I. (2007). Characterization of wheat varieties by seed storage protein electrophoresis. African Journal of Biotechnology, 6 (5), 497-500. https://doi: 10.4314/ajb.v6i5.56863

Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceeding of the National Academy of Science of the United States of America, 76, 5269-5273.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321-3323. https://doi.org/10.1073/pnas.70.12.3321

Nieto-Taladriz, M. T., & Carrillo, J. M. (1996). Complexity of the Gli-A3 locus in bread wheat. Plant Breeding, 115, 192. https://doi.org/10.1111/j.1439-0523.1996.tb00900.x

Novoselskaya-Dragovich, A., Krupnov, V. A., Saifulin, R. A., Pukhalskiy, V. A. (2003). Dynamics of genetic variation at gliadin-coding loci in Saratov cultivars of common wheat Triticum aestivum L. over eight decades of scientific breeding. Russian Journal of Genetics, 39, 1130-1137. https://doi.org/10.1023/A:1026170709964

Ojaghi, J., & Akhundova, E. (2010). Genetic diversity of gliadin pattern, morphological traits and baking quality in doubled haploid wheat. African Journal of Biotechnology, 9(7), 956-966. https://www.ajol.info/index.php/ajb/article/view/78158. https://doi.org/10.5897/AJB09.728

Payne, P., Seekings, J., Worland, A., Jarvis, M., Holt, G. (1987). Allelic variation of glutenin sub-units and gliadins and its effect on bread-making quality in wheat. Journal of cereal science, 6, 103-118. https://doi.org/10.1016/S0733-5210(87)80047-4

Pogna, N., Metakovsky, R., Radaelli, R., Raeneri, F., Dachkevich. (1993). Recombination mapping of Gli-5 a new gliadin-coding locus on hromosome 1-A and 1-B in common wheat. Teoretical and Applied Genetics, 87, 113-121. https://doi: 10.1007/BF00223754

Rodriguez, M., & Carrillo, J. (1996). Linkage map of prolamin loci Gli-D4 and Gli-D5 in hexaploid wheat. Plant Breeding, 115, 189-191. https://doi:10.1111/j.1439-0523.1996.tb00899.x

Ruiz, M., Metakovsky, E. V., Rodriguez-Quijano, M., Vazquez, J. F., Carrillo, J. M. (2002b). Assessment of storage protein variation in relation to some morphological characters in a sample of Spanish landraces of common wheat (Triticum aestivum L. ssp. aestivum). Genetic Resources and Crop Evolution, 49(4), 373-384. https://doi:10.1023/A:1020626430815

Ruiz, M., Rodriguez-Quijano, M., Metakovsky, E. V., Vazquez, J. F., Carrillo, J. M. (2002a). Polimorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadin alleles. Field Crops Research, 79(2), 185-196. https://doi:10.1016/S0378-4290(02)00139-9

Ruiz, M., Aguiriano, E., Fité, R., Carrillo, J. M. (2007). Combined use of gliadins and SSRs to analyse the genetic variability of the Spanish collection of cultivated diploid wheat (Triticum monococcum L. ssp. monococcum). Genetic Resources and Crop Evolution, 54(8), 1849–1860. https://doi.org/10.1007/s10722-007-9208-7

Sapirstein, H., & Bushuk, W. (1986). Computer-aided wheat cultivar identification and analysis of densitometric scanning profiles of gliadin electrophoregrams. Seed Science& Technology, 14, 489-517.

Saponaro, C, Pogna, N., Castagna, R., Pasquini, M., Cacciatori, P., Redaelli, R. (1995). Allelic variation at the GliA1, GliA2 and GluA1 loci and quality in diploid wheat Triticum monococcum evaluated with SDS sedimentation test. Genetic Resources, 66, 127-137. https://doi.org/10.1017/S0016672300034479

Sewa, R., Nisha, J., Vinamrata, D., Singh, R., Shoran, J. (2005). Analyses of acid-PAGE gliadin pattern of Indian wheat representing different environments and periods. Crop Science, 45, 1256-1263. https://doi:10.2135/cropsci2004.0334

Shewry, P., & Halford, N. G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 53(370), 947-958. https://doi:10.1093/jexbot/53.370.947

Shuaib, M., Zeb, A., Ali, Z., Ali, W., Ahmad, T., Khan, I. (2007). Characterization of wheat varieties by seed storageprotein electrophoresis. African Journal of Biotechnology, 6(5), 497-500. https://doi:10.4314/ajb.v6i5.56863

Stoyanova, S., & Kolev K. (1996). Identification of varieties of soft wheat by electrophoresis of the gliadin fraction. Plant Science, 35, 5-9.

Stoyanova, S. D. (2002). Weat genetic resources evalutation by electrophoretic separation of gliadins. Jurnal of Biotechnology and Biotechhnological Equipment, 16, 3-7. https://doi.org/10.1080/13102818.2002.10819147

Tanaka, H., Tomita, M., Tsujimoto, H., Yasumuro, Y. (2003). Limited but specific variation of seed storage proteins in Japanese common wheat (Triticum aestivum L.). Euphytica, 132, 167-174. https://doi.org/10.1023/A:1024638616507

Velkov, B. (1991). Catalog of wheat electrophoregram varieties. Crop Science, 40, 17-23.

Wu, F., Han, Z. X., Liu, Y., Pan, Z. F., Deng, G. B., Yu, M. Q. (2007). Unique gliadin patterns in Chinese winter wheat cultivars. Plant Breeding, 126(5), 498-502. https://doi:10.1111/j.1439-0523.2007.01358.x

Zaefizadeh, M., Somarin, S.J., Ojaghi, J., Seyedi, S.M., Mahmoodabad, R.Z., Ochi, M. (2010). Genetic diversity for gliadin patterns of durum wheat landraces in the Northwest of Iran and Azerbaijan. Pesquisa Agropecuária Brasileira, 45, 1425–1432. https://doi:10.1590/S0100-204X2010001200013

Zhao-Cai, M., Chen, Q., Zheng, Y. (2006). Allelic identification and genetic diversity at Gli-A1and Gli-A2 loci in einkorn wheat. International Journal of Agricultural Research, 1, 100-107. https://doi:10.3923/ijar.2006.100.107

Zhao-Cai Ma, Yu-Ming Wei, Ze-Hong Yan, You-Liang Zheng. (2007). Genetic variations of gliadin and high-molecular-weight glutenin subunits in diploid wheats. PGR Newsletter, 150, 10-15.




DOI: http://dx.doi.org/10.14720/aas.2020.116.2.1430

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Gergana Nikolova Desheva

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY-NC-ND 4.0 License.

                            


eISSN 1854-1941