Calibration of soil moisture sensors, determination of soil water retention properties for precision irrigation based on soil water content measurements

Špela ŽELEZNIKAR, Urša PEČAN, Luka HONZAK, Marina PINTAR

Abstract


Water is becoming a scarce commodity. Therefore, proper water management in precision irrigation is crucial to increase productivity and reduce the cost of crop production. Precision irrigation is based on measuring the soil water content, which is often measured with dielectric sensors that measure the apparent permittivity of the soil. Although the sensors are already equipped with a factory calibration function that converts the measured permittivity into volumetric water content, the function does not work properly for all soil types. It is therefore recommended to check whether a soil-specific calibration is required for accurate soil water content measurements. Precise irrigation also requires adequate determination of soil water retention properties, which can be determined using various procedures and methods. In this paper, we presented the results of applying different approaches to determine soil-specific calibration functions using two types of dielectric sensors (SM150T, Delta-T Devices and MVZ 100, Eltratec) in different soil samples obtained from locations in Slovenia where precision irrigation is performed. In addition, the results of determining the water retention properties of the soil using different methods were also compared.


Keywords


precision irrigation; soil moisture sensors; water retention properties; calibration methods

References


Adeyemi, O., Grove, I., Peets, S., & Norton, T. (2017). Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability, 9(3), 353. https://doi.org/10.3390/su9030353

Baviskar, S. M., & Heimovaara, T. J. (2017). Quantification of soil water retention parameters using multi-section TDR-waveform analysis. Journal of Hydrology (Amsterdam), 549, 404–415. https://doi.org/10.1016/j.jhydrol.2017.03.068

Bittelli, M. (2011). Measuring soil water content: A review. HortTechnology, 293–300. https://doi.org/10.21273/HORTTECH.21.3.293

Bircher, S., Andreasen, M., Vuollet, J., Vehviläinen, J., Rautiainen, K., Jonard, F., Weihermüller, L., Zakharova, E., Wigneron, J.-P., & Kerr, Y. H. (2016). Soil moisture sensor calibration for organic soil surface layers. Geoscientific Instrumentation, Methods and Data Systems, 5(1), 109–125. https://doi.org/10.5194/gi-5-109-2016

Cvejić, R., Černič-Istenič, M., Honzak, L., Pečan, U., Železnikar, Š., & Pintar, M. (2020). Farmers try to improve their irrigation practices by using daily irrigation recommendations—The Vipava valley case, Slovenia. Agronomy, 10(9), 1238. https://doi.org/10.3390/agronomy10091238

Delta-T Devices. (2016). User manual for the SMT150T soil moisture sensor. Delta-T Devices, Cambridge, VB. Pridobljeno s https://www.delta-t.co.uk/wp-content/uploads/2017/01/SM150_Manual_version_1.2.pdf

Evett, S. R., Stone, K. C., Schwartz, R. C., O’Shaughnessy, S. A., Colaizzi, P. D., Anderson, S. K., & Anderson, D. J. (2019). Resolving discrepancies between laboratory-determined field capacity values and field water content observations: Implications for irrigation management. Irrigation Science, 37(6), 751–759. https://doi.org/10.1007/s00271-019-00644-4

Fares, A., Awal, R., & Bayabil, H. K. (2016). Soil water content sensor response to organic matter content under laboratory conditions. Sensors, 16(8). https://doi.org/10.3390/s16081239

Ferrarezi, R. S., Nogueira, T. A. R., & Zepeda, S. G. C. (2020). Performance of soil moisture sensors in Florida sandy soils. Water, 12(2), 358. https://doi.org/10.3390/w12020358

González-Teruel, J. D., Torres-Sánchez, R., Blaya-Ros, P. J., Toledo-Moreo, A. B., Jiménez-Buendía, M., & Soto-Valles, F. (2019). Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors, 19(3), 491. https://doi.org/10.3390/s19030491

Hajdu, I., Yule, I., Bretherton, M., Singh, R., & Hedley, C. (2019). Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils. Agricultural Water Management, 217, 332–345. https://doi.org/10.1016/j.agwat.2019.03.002

Hignett, C., Evett, S. (2008). Direct and surrogate measures of soil water content. V: Field estimation of soil water content. A practical guide to methods, instrumentation and sensor technology. Training course series 30. Vienna, International Atomic Energy Agency: 1-21

Holzman, M., Rivas, R., Carmona, F., & Niclos, R. (2017). A method for soil moisture probes calibration and validation of satellite estimates. Methodsx, 4, 243–249. https://doi.org/10.1016/j.mex.2017.07.004

Hyprop Operational Manual.pdf. (2020). Pridobljeno s http://library.metergroup.com/Manuals/UMS/Hyprop_Manual.pdf

International Organization for Standardization.(1993). Soil quality - determination of dry matter and water content on a mass basis-gravimetric method (ISO Standard No. 11465). Pridobljeno s https://www.iso.org/standard/20886.html

Kamienski, C., Soininen, J.-P., Taumberger, M., Dantas, R., Toscano, A., Salmon Cinotti, T., Filev Maia, R., & Torre Neto, A. (2019). Smart water management platform: IoT-based precision irrigation for agriculture. Sensors, 19(2), 276. https://doi.org/10.3390/s19020276

Khosla, R., Fleming, K., Delgado, J. A., Shaver, T. M., & Westfall, D. G. (2002). Use of site-specific management zones to improve nitrogen management for precision agriculture. Journal of Soil and Water Conservation, 57(6), 513–518.

LIFE VivaCCAdapt. (2020). Pridobljeno s http://www.life-vivaccadapt.si/sl/

Matula, S., Batkova, K., & Legese, W. L. (2016). Laboratory performance of five selected soil moisture sensors applying factory and own calibration equations for two soil media of different bulk density and salinity levels. Sensors, 16(11), 1912. https://doi.org/10.3390/s16111912

McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23. https://doi.org/10.1007/s11119-005-0681-8

Mittelbach, H., Lehner, I., & Seneviratne, S. I. (2012). Comparison of four soil moisture sensor types under field conditions in Switzerland. Journal of Hydrology, 430–431, 39–49. https://doi.org/10.1016/j.jhydrol.2012.01.041

Neupane, J., & Guo, W. (2019). Agronomic basis and strategies for precision water management: A review. Agronomy, 9(2), 87. https://doi.org/10.3390/agronomy9020087

Paltineanu, I. C., & Starr, J. L. (1997). Real-time soil water dynamics using multisensor capacitance probes: laboratory calibration. Soil Science Society of America Journal, 61(6), 1576–1585. https://doi.org/10.2136/sssaj1997.03615995006100060006x

Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175–206. https://doi.org/10.1016/S0378-3774(02)00075-6

Durner, W., Pertassek, T., & Str, G. (b. d.). HYPROP-FIT Software. 68. (2011). Pridobljeno s http://www.soil.tu-bs.de/mitarbeiter/durner/software/hyprop/HYPROP-FIT_Manual.pdf

Pintar, M. (2006). Osnove namakanja s poudarkom na vrtninah in sadnih vrstah v zahodni, osrednji in juzni Sloveniji. Ministrstvo za kmetijstvo, gozdarstvo in prehrano. Ministrstvo za kmetijstvo, gozdarstvo in prehrano.

Pro-Pridelava, EIP, BF, Oddelek za Agronomijo. (2020). Pridobljeno s https://www.bf.uni-lj.si/sl/raziskave/raziskovalni-projekti/140/povecanje-produktivnosti-kmetijske-pridelave-z-ucinkovito-in-trajnostno-rabo-vode-propridelava

Provenzano, G., Rallo, G., & Ghazouani, H. (2015). Assessing field and laboratory calibration protocols for the Diviner 2000 probe in a range of soils with different textures. Journal of Irrigation and Drainage Engineering, 142, 04015040. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000950

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Pridobljeno s https://www.R-project.org/

Roberti, J. A., Ayres, E., Loescher, H. W., Tang, J., Starr, G., Durden, D. J., … Zulueta, R. C. (2018). A robust calibration method for continental-scale soil water content measurements. Vadose Zone Journal, 17(1), UNSP 170177. https://doi.org/10.2136/vzj2017.10.0177

Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70(5), 1569–1578. https://doi.org/10.2136/sssaj2005.0117

Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986). Estimating Generalized Soil-water Characteristics from Texture. Soil Science Society of America Journal, 50(4), 1031–1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x

Schindler, U., Durner, W., von Unold, G., Mueller, L., & Wieland, R. (2010). The evaporation method: Extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. Journal of Plant Nutrition and Soil Science, 173(4), 563–572. https://doi.org/10.1002/jpln.200900201

Starr, J. L., Paltineanu, I. C. (2002). Capacitance devices. V: Dane J.H., Topp G.C. (ed.) Methods of soil analysis. Part 4 - Physical Methods. SSSA Book Series. Madison, Wisconsin, USA, Soil Science Society of America Book Series

Topp, G. C., Ferré, P. A. (2002). General information. Scope of methods and brief description. V: Dane, J. H., Topp, G. C. (ed.) Methods of Soil Analysis. Part 4 - Physical Methods. SSSA Book Series. Madison, Wisconsin, USA, Soil Science Society of America Book Series

van Genuchten, M. Th. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Vaz, C. M. P., Jones, S., Meding, M., & Tuller, M. (2013). Evaluation of Standard Calibration Functions for Eight Electromagnetic Soil Moisture Sensors. Vadose Zone Journal, 12(2), vzj2012.0160. https://doi.org/10.2136/vzj2012.0160

Veihmeyer, F. J., & Hendrickson, A. H. (1949). Methods Of Measuring Field Capacity And Permanent Wilting Percentage Of Soils. Soil Science, 68(1), 75–94. https://doi.org/10.1097/00010694-194907000-00007

Weitz, A. M., Grauel, W. T., Keller, M., & Veldkamp, E. (1997). Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin. Water Resources Research, 33(6), 1241–1249. https://doi.org/10.1029/96WR03956

Zinkernagel, J., Maestre-Valero, Jose. F., Seresti, S. Y., & Intrigliolo, D. S. (2020). New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agricultural Water Management, 242, 106404. https://doi.org/10.1016/j.agwat.2020.106404

Zemni, N., Bouksila, F., Persson, M., Slama, F., Berndtsson, R., & Bouhlila, R. (2019). Laboratory Calibration and Field Validation of Soil Water Content and Salinity Measurements Using the 5TE Sensor. Sensors, 19(23), 5272. https://doi.org/10.3390/s19235272

Zotarelli, L., Dukes, M., & Morgan, K. (2010). Interpretation of Soil Moisture Content to Determine Soil Field Capacity and Avoid Over-Irrigating Sandy Soils Using Soil Moisture Sensors 1. Undefined. https://www.semanticscholar.org/paper/Interpretation-of-Soil-Moisture-Content-to-Soil-and-Zotarelli-Dukes/4c522b8638c84516e81b3baca2250bc530ca25ca. https://doi.org/10.3390/s19235272

Zhang, Y., Schaap, M. G., & Zha, Y. (2018). A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model. Water Resources Research, 54(12), 9774–9790. https://doi.org/10.1029/2018WR023539




DOI: http://dx.doi.org/10.14720/aas.2022.118.1.1742

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Špela ŽELEZNIKAR, Urša PEČAN, Luka HONZAK, Marina PINTAR

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941