Heat tolerance in Mashona beef cows in semi-arid rangelands: does conformation matter?

Alphonce MATOPE, Titus Jairus ZINDOVE, Marshall DHLIWAYO, Michael CHIMONYO, Musavenga TIVAPASI

Abstract


High temperatures and frequent heat waves raise concerns about heat stress in cattle in grass-based systems, especially in arid and semiarid areas. This study analysed the relationship between conformation traits and physiological parameters associated with heat stress in Mashona cattle. A total of 200 records from fifty cows were used to study the relationships between seven conformation traits and physiological parameters associated with heat stress. Body conformation traits were categorised into three principal components related to body capacity (body depth, flank circumference, chest girth), frame size (stature and body length), and loose skin fold (navel height and dewlap size). As the size of abdominopelvic and thoracic cavities increased, respiratory rate, heart rate, and rectal temperature decreased significantly, while blood triiodothyronine concentration increased. Cattle with deeper bodies, larger flanks, and larger chest girths had significantly lower heart rate, respiratory rate, and rectal temperature but higher blood triiodothyronine concentration than cattle with shallower bodies, smaller flanks, and smaller chest girths. Respiratory rate increased with increasing frame size. Large-framed cattle had significantly higher respiratory rate and lower blood thyroxine concentration. Small-framed cattle with larger chest girth, larger dewlap, and navel farther from the ground surface are better adapted to higher ambient temperatures.

Keywords


beef cattle; breeds; Mashona; grazing; heat stress; physiological parameters; conformation traits; body frame; arid rangelands; semi-arid rangelands

Full Text:

PDF

References


Abdurehman, A. (2019). Physiological and anatomical adaptation characteristics of Borana cattle to pastoralist lowland environments. Asian Journal of Biological Sciences, 12(2), 364–372.

Alfonzo, E. P. M., da Silva, M. V. G. B., dos Santos Daltro, D., Stumpf, M. T., Dalcin, V. C., Kolling, G., ... McManus, C. M. (2016). Relationship between physical attributes and heat stress in dairy cattle from different genetic groups. International Journal of Biometeorology, 60, 245–253.

Baek, Y. C., Kim, M., Jeong, J. Y., Oh, Y. K., Lee, S. D., Lee, Y. K., ... Choi, H. (2019). Effects of short-term acute heat stress on physiological responses and heat shock proteins of Hanwoo steer (Korean cattle). Journal of Animal Reproduction and Biotechnology, 34(3), 173–182.

Baumgard, L. H., & Rhoads, R. P. (2012). Ruminant production and metabolic response to heat stress. Journal of Animal Science, 90(6), 1855–1865.

Bernabucci, U., & Mele, M. (2014). Effect of heat stress on animal production and welfare. The case of a dairy cow. Agrochimica, 58, 53–60.

Bro-Jørgensen, J. (2016). Evolution of the ungulate dewlap: Thermoregulation rather than sexual selection or predator deterrence? Frontiers in Zoology, 13, Article 33.

Brown-Brandl, T. M. (2018). Understanding heat stress in beef cattle. Revista Brasileira de Zootecnia, 47.

da Costa, A. N. L., Feitosa, J. V., Montezuma, P. A., de Souza, P. T. & de Araújo, A. A. (2015). Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in north-eastern Brazil. International Journal of Biometeorology, 59(11), 1647–1653.

De Rensis, F., & Scaramuzzi, R. J. (2003). Heat stress and seasonal effects on reproduction in the dairy cow. Theriogenology, 60(6), 1139–1151.

Descheemaeker, K., Zijlstra, M., Masikati, P., Crespo, O., & Tui, S. H. K. (2018). Effects of climate change and adaptation on the livestock component of mixed farming systems: A modelling study from semi-arid Zimbabwe. Agricultural Systems, 159, 282–295.

Dubey, A., Mishra, S., Khune, V., Gupta, P. K., Sahu, B. K., & Nandanwar, A. K. (2012). Improving linear type traits to improve production sustainability and longevity in purebred Sahiwal cattle. Journal of Agriculture, Science and Technology, 2, 636–639.

Dzavo, T., Zindove, T.J., Dhliwayo, M., Chimonyo, M., & Tivapasi, M. T. (2020). Do haematological profiles of cows in drought prone areas differ with conformation? Spanish Journal of Agricultural Research, 18(2), 12–26.

Dzavo, T., Zindove, T. J., Dhliwayo, M., & Chimonyo, M. (2019). Effects of drought on cattle production in sub-tropical environments. Tropical Animal Health and Production, 51(3), 669–675.

Edmonson, A. J., Lin, I. J., Weaver, C. O., Farver, T., & Webster, G. (1989). A body condition scoring chart for Holstein cows. Journal of Dairy Science, 72, 68–78.

Gregorini, P. (2012). Diurnal grazing pattern: its physiological basis and strategic management. Animal Production Science, 52, 416–430.

Hansen, P. J. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Animal Reproduction. Science, 82, 349–360.

Hansen, L. B., Cole, J. B., Marx, G. D., & Seykora, A. J. (1999). Productive life and reasons for disposal of Holstein cows selected for large versus small body size. Journal of Dairy Science, 82, 795–801.

Kadzere, C. T., Murphy, M. R., Silanikove, N., & Maltz, E. (2002). Heat stress in lactating dairy cows. a review. Livestock Production Science, 77(1), 59–91.

Kahl, S., Elsasser, T. H., Rhoads, R. P., Collier, R. J., & Baumgard, L. H. (2015). Environmental heat stress modulates thyroid status and its response to repeated endotoxin challenge in steers. Domestic Animal Endocrinology, 52, 43–50.

Kanuya, N. L., Matiko, M. K., Nkya, R., Bittegeko, S. B. P., Mgasa, M. N., Reksen, O., & Ropstad, E. (2006). Seasonal changes in nutritional status and reproductive performance of Zebu cows kept under a traditional agro-pastoral system in Tanzania. Tropical Animal Health and Production, 38, 511–519.

Katiyatiya, C. L. F., Bradley, G., & Muchenje, V. (2017). Thermotolerance, health profile and cellular expression of HSP90AB1 in Nguni and Boran cows raised on natural pastures under tropical conditions. Journal of Thermal Biology, 69, 85–94.

Khan, M. A., Khan, M. S., & Waheed, A. (2018). Morphological measurements and their heritabilities for Sahiwal cattle in Pakistan. Journal of Animal and Plant Sciences, 28(2), 431–440.

Kotrba, R., Knížková, I., Kunc, P., & Bartoš, L. (2007). Comparison between the coat temperature of the eland and dairy cattle by infrared thermography. Journal of Thermal Biology, 32(6), 355–359.

Kong, X., Hu, C., & Duan, Z. (2017). Generalized Principal Component Analysis. In Principal Component Analysis Networks and Algorithms (pp. 185–233). Singapore: Springer.

Larroque, H., & Ducrocq, V. (2001). Relationships between type and longevity in the Holstein breed. Genetics Selection Evolution, 33(1), 39–59.

Lee, C. N., Baek, K. S., & Parkhurst, A. (2016). The impact of hair coat color on longevity of Holstein cows in the tropics. Journal of Animal Science and Technology, 58, 1–7.

Levente, K., Krisztina, N., Kultus, K., Otto, S., & Janos, T. (2012). Heart rate and heart rate variability during milking in dairy cows. Magy. Állatorv. Lapja, 134(11), 653–661.

Marai, I. F. M., El-Darawany, A. A., Fadiel, A., & Abdel-Hafez, M. A. M. (2007). Physiological traits as affected by heat stress in sheep – a review. Small Ruminant Research, 71(1–3), 1–12.

Marcillac-Embertson, N. M., Robinson, P. H., Fadel, J. G., & Mitloehner, F. M (2009). Effects of shade and sprinklers on performance, behaviour, physiology, and environment of heifers. Journal of Dairy Science, 92(2), 506–517.

McManus, C., Prescott, E., Paludo, G. R., Bianchini, E., Louvandini, H., & Mariante, A. S. (2009). Heat tolerance in naturalized Brazilian cattle breeds. Livestock Science, 120(3), 256–264.

McManus, C., Paludo, G. R., Louvandini, H., Gugel, R., Sasaki, L. C. B., & Paiva, S. R. (2009). Heat Tolerance in Naturalized Brazilian Sheep. Physiological and Blood Parameters. Tropical Animal Health and Production, 41(1), 95–101.

Mulliniks, J. T., Beard, J. K., & King, T. M. (2020). Invited review: effects of selection for milk production on cow-calf productivity and profitability in beef production systems. Applied Animal Science, 36(1), 70–77.

Mugandani, R., Wuta, M., Makarau, A., & Chipindu, B. (2012). Re-classification of Agro – ecological Regions of Zimbabwe in conformity with Climate variability and change. African Crop Science Journal, 20(S2), 361–369.

Mwai, O., Hanotte, O., Kwon, Y. J., & Cho, S. (2015). African indigenous cattle. Unique genetic resources in a rapidly changing world. Asian-Australasian Journal of Animal Sciences, 28(7), 911–921.

Neiva, J. N. M., Teixeira, M., Turco, S. H. N., Oliveira, S. M. P., & Moura, A. A. A. N. (2004). Effects of Environmental Stress on Physiological Parameters of Feedlot Sheep in the Northeast of Brazil. Revista Brasileira de Zootecnia, 33(3), 668–678.

Ndlovu, T., Chimonyo, M., & Muchenje, V. (2009). Monthly changes in body condition scores and internal parasite prevalence in Nguni, Bonsmara and Angus steers raised on sweetveld. Tropical animal health and production, 41(7), 1169–1177.

Olasege, B. S., Zhang, S., Zhao, Q., Liu, D., Sun, H., Wang, Q., ... Pan, Y. (2019). Genetic parameter estimates for body conformation traits using composite index, principal component, and factor analysis. Journal of dairy science, 102(6), 5219–5229.

Raines, C. R., Dikemen, M. E., Unruh, J. A., Hunt, M. C., & Knock, R. C. (2008). Predicting cattle age from eye lens weight and nitrogen content dentition, and maturity score. Journal of Animal Science, 86(12), 3557–3567.

Rashamol, V. P., Sejian, V., Bagath, M., Krishnan, G., Archana, P. R., & Bhatta, R. (2018). Physiological adaptability of livestock to heat stress: An updated review. Journal of Animal Behaviour and Biometeorology, 6(3), 62–71.

Rust, J. M., & Rust, T. (2013). Climate change and livestock production. A review with emphasis on Africa. South African. Journal of Animal Science, 43(3) 255–267.

SAS (2012). SAS/STAT User’s Guide, release 9.4 edition. Cary, NC, USA: SAS Institute Inc.

Scasta, J. D., Lalman, D. L., & Henderson, L. (2016). Drought mitigation for grazing operations: matching the animal to the environment. Rangelands, 38(4), 204–210.

Scharf, B., Carroll, J. A., Riley, D. G., Chase Jr, C. C., Coleman, S. W., Keisler, D. H., & Spiers, D. E. (2010). Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus) Bos Taurus cattle during controlled heat challenge. Journal of Animal Science, 88(7), 2321–2336.

Scholtz, M. M., & Theunissen, A. (2010). The use of indigenous cattle in terminal cross-breeding to improve beef cattle production in Sub-Saharan Africa. Animal Genetic Resources, 46, 33–39.

Srikandakumar, A., & Johnson, E. H. (2004). Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian Milking Zebu cows. Tropical Animal Health and Production, 36(7), 685–692.

Svotwa, E., Makarau, A., & Hamudikuwanda, H. (2007). Heat tolerance of Mashona, Brahman and Simmental cattle breeds under warm humid summer conditions of natural region II area of Zimbabwe. Electronic Journal of Environmental, Agricultural and Food Chemistry, 6(4), 1934–1944.

Veissier, I., Palme, R., Moons, C. P., Ampe, B., Sonck, B., Andanson, S., & Tuyttens, F. A. (2018). Heat stress in cows at pasture and benefit of shade in a temperate climate region. International Journal of Biometeorology, 62(4), 585–595.

Wu, X., Fang, M., Liu, L., Wang, S., Liu, J., Ding, X., ... Lund, M. S. (2013). Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC genomics, 14(1), 1–10.

Zindove, T. J., Chimonyo, M., & Nephawe, K. A. (2015). Relationship between linear type and fertility traits in Nguni cows. Animal, 9(6), 944–951.




DOI: http://dx.doi.org/10.14720/aas.2023.119.1.2259

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Alphonce MATOPE, Titus Jairus ZINDOVE, Marshall DHLIWAYO, Michael CHIMONYO, Musavenga TIVAPASI

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941