Open vertical farms: a plausible system in increasing tomato yield and encouraging natural suppression of whiteflies

Suleiman MUSTAPHA, Abdulrasak Kannike MUSA, Oluropo Ayotunde APALOWO, Abdrahaman Adebowale LAWAL, Olaniyi Israel OLAYIWOLA, Helen Olaide BAMIDELE, Robert Omotayoman UDDIN II


This study evaluated the effectiveness of open vertical farming in increasing tomato yield and also recruiting the presence of ecological service providers in the control of whiteflies. The experiment compared the horizontal farming approach to novel outdoor vertical farm design. Using both raised and flatbeds to represent horizontal farm, tomato plants were grown in a spacing of 3.6 and 2.4 m2 respectively while the vertical farm covered a land space of 1.8 m2 having three arrays with array 1 at ground level, array 2 and 3 were elevated at 110 and 220 cm high respectively. Data collected included the numbers of Bemisia tabaci (Gennadius, 1889) and predatory spiders and; tomato fruit yield (g). Results indicated that the mean number of predatory spiders in the vertical farm from 6 – 10 weeks after transplanting were able to supress B. tabaci populations when compared to the horizontal farm. The total fruit yield harvested indicated that the vertical farm produced more tomato fruit yield compared to the horizontal farm. It is plausible that the practice of outdoor vertical farming may be a step approach solution to land shortages and also a sustainable system for integrated pest management.


Vertical farm; Bemisia tabaci; predator-prey interaction; biological control; tomato; insect pest

Full Text:



Al-Kodmany, K. (2018). The vertical farm: a review of developments and implications for the vertical city. Buildings, 8(24), 2-36.

Corvalan, C., Hales, S. & McMichael, A. J., (2005). Ecosystems and human well-being: Health synthesis; World Health Organization: Geneva, Switzerland.

Denholm, L., Cahill, M., Byrne, F. J. & Devonshire, A.L. (1996). Progress with documenting and combating insecticide résistance in Bemisia. In: Gerling, D. and Mayer, R.T., (eds.), Bemisia 1995: Taxonomy, Biology, Damage, Control and Management, Intercept Ltd. Andover, Hants. UK, pp. 577-603.

Denholm, L., Cahill, M., Dennehy, T. J. & Horowitz, A. R. (1998). Challenges with managing insecticide résistance in agricultural pests, exemplified by the whitefly Bemisia tabaci. Philosophical Transactions of the Royal Society (Lond. B), 353:1757-1767.

Despommier, D. (2007). The vertical farm essay 1: Reducing the impact of agriculture on ecosystem function and services. Retrieved November 8, 2011, from

Despommier, D. (2009). The rise of vertical farms. Scientific American, 301, 80-87.

Despommier, D. (2010). The Vertical Farm: Feeding the World in the 21st Century; Thomas Dunne Books: New York, NY, USA.

Despommier, D. (2013). Farming up the city: The rise of urban vertical farms. Trends in Biotechnology, 31, 388–389.

Despommier, D. (2014). Encyclopedia of Food and Agricultural Ethics (Vertical Farms in Horticulture); Springer: Dordrecht, The Netherlands.

Ellsworth, P. C. & Martinez-Carrillo, J. L. (2001). IPM for Bemisia tabaci: a case study from North America. Crop Protection, 20, 853-869.

European and Mediterranean Plant Protection Organization (2004). Diagnostic protocols for regulated pests. Bulletin, 34, 281–288.

FAO, 2018. Food and Agriculture Organization of the United Nations: FAOSTAT. (last access: 9 March 2018).

Garg, A. & Balodi, R. (2014). Recent Trends in Agriculture: Vertical Farming and Organic Farming. Advances in Plants & Agriculture Research, 1(4), 142-144.

Gerling, D., Alomar, O. & Arnô, J., (2001). Biological control of Bemisia tabaci using predators and parasitoids. In Naranjo, S. E. and Ellsworth, P. C. (eds.), Spécial Issue: Challenges and Opportunities for Pest Management of Bemisia tabaci in the New Century. Crop Protection, 20, 779-799.

Healy, R. G. & Rosenberg, J. S. (2013). Land Use and the States; Routledge: New York, NY, USA.

Hossain, E., Nabi, S. N. & Kaminski, A. (2015). Vertical agriculture: Homestead horticulture suspended in sacks. Penang, Malaysia: WorldFish, Program Brief Jayakumar, S. & Sankari, A. (2010). Spider population and their predatory efficiency in different rice establishment techniques in Aduthurai, Tamil Nadu. Journal of Biopesticides, 3, 020-027.

Karban, R. & Baldwin, I. T. (1997). Induced Responses to Herbivory. Chicago University Press, Chicago, Illinois, USA.

Kessler, A. & Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141–2144.

López, R., Carmona, D., Vincini, A. M., Monterubbianesi, G. & Caldiz, D. (2010). Population dynamics and damage caused by the leafminer Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae) on seven potato processing varieties grown in temperate environment. Neotropical Entomology, 39(1), 108-114.

Lou, Y., Xiaoyan, H., Turlings, T. C. J., Cheng, J., Xuexin, C. & Gongyin, Y. (2006). Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid, Anagrus nilaparvatae in the field. Journal of Chemical Ecology, 32, 2375–2387.

Marshall, S. A. (2006). Insect: Their Natural History and Diversity. Firefly Books

Matthews, G. A. (2008). Attitudes and behaviours regarding use of crop protection products—A survey of more than 8500 smallholders in 26 countries. Journal of Crop Protection, 27, 834-846.

Muller, A., Ferré, M., Engel, S., Gattinger, A., Holzkämper, A., Huber, R., Müller, M. & Six, J. (2017). Can soil-less crop production be a sustainable option for soil conservation and future agriculture? Land Use Policy, 69, 102–105.

Olaniyi, J. O., Akanbi, W. B., Adejumo, T. A. & Akande, O. G., (2010). Growth, fruit yield and nutritional quality of tomato varieties. African Journal of Food Science, 4(6), 398–402.

Oyeniyi, A. O. & Oyeseyi, J. O. (2014). Diversity and distribution of spiders in southwestern Nigeria. Natural Resources, 5, 926-935.

Pickett, J. A., Bruce, T. J. A., Chamberlain, K., Hassanali, A., Khan, Z. R., Matthes, M. C., Napier, J. A., Smart, L. E., Wadhams, L. J. & Woodcock, C. M. (2006). Plant volatiles yielding new ways to exploit plant defence. In: Dicke, M., Takken, W. (Eds.), Chemical Ecology: From Gene to Ecosystem. Springer, Netherlands, pp. 161–173.

Roberts, J. M., Bruce, T. J. A., Monaghan, J. M., Pope, T. W., Leather, S. R. & Beacham, A. M. (2020). Vertical farming systems bring new consideration for pest and disease management. Annals of Applied biology, 176, 226-232.

Sahu S., Sing, R. & Kumar, P. (1996). Host preference and feeding potential of spiders predaceous in insect pests of rice. Journal of Entomological Research, 20(2), 145-150.

Sarkar, A. & Majumder, M. (2015). Opportunities and challenges in sustainability of vertical eco farming: A review. Journal of Advanced Agricultural Technologies, 2, 98-105.

Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P. & Jacquot, E. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954.

Sequeira, R. V., Naranjo & S. E. (2008). Sampling and management of Bemisia tabaci (Genn.) biotype B in Australian cotton. Crop Protection, 27, 1262–1268.

Šimala, M., Milek, T. M. & Korić, B. (2009). Whitefly species (Hemiptera: Aleyrodidae) recorded on imported ornamental plants in croatia from 2005–2008. Institute for plant protection in agriculture and forestry of Republic of Croatia, 389-396.

Southon, R. J, Fernandes, O. A., Nascimento, F. S. & Sumner, S. (2019). Social wasps are effective biocontrol agents of key lepidopteran crop pests. Proceedings of the Royal Society B. Soc. B., 286, 20191676.

Thaler, J. (1999). Jasmonic acid mediated interactions between plants, herbivores, parasitoids and pathogens: a review of field experiments in tomato. In: Agrawal, A. A., Tuzun, S., Bent, E. (Eds.), Induced Plant Defenses Against Pathogens and Herbivores (pp.319-334). APS Press, St. Paul, Minnesota.

Thomaier, S, Specht, K, Henckel, D, Dierich, A, Siebert, R, Freisinger, U. B & Sawicka, M. (2015) Farming in and on urban buildings: Present practice and specific novelties of zero-acreage farming (Z Farming). Renewable Agriculture and Food Systems, 30, 43–54.

Touliatos, D., Dodd, I. C. & McAinsh, M. (2016). Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food and Energy Security, 5, 184–191.

Varela, A. M., Serf, A. & Lohr, B. (2003). A guide to IPM in tomato production in eastern and southern Africa. International Centre of Insect Physiology and Ecology Waiganjo, M. M., Wabule, N. M., Nyongesa, D., Kibaki, J. M., Onyango, I., Wepukhulu, S. B. & Muthoka, N. M. (2006). Tomato production in Kirinyaga district, Kenya. A baseline Survey report. 3-4.



  • There are currently no refbacks.

Copyright (c) 2022 Suleiman MUSTAPHA, Abdulrasak Kannike MUSA, Oluropo Ayotunde APALOWO, Abdrahaman Adebowale LAWAL, Olaniyi Israel OLAYIWOLA, Helen Olaide BAMIDELE, Robert Omotayo UDDIN II


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941