Potential effect of intercropping in the control of weeds, diseases, and pests in a wheat-faba bean system

Hasnaa SAMMAMA, Mohamed Najib ALFEDDY, Driss HSISSOU, Mimoun EL KAOUA


Intercropping has proved to be a promising alternative in the biological control of biotic factors by reducing the excessive use of plant protection products that are harmful to the environment and human health. In this study, aimed to examinate the effect of intercropping systems on diseases, weeds and pests control in organic field experiments in Western Morocco. Two field experiments were conducted during 2017-2018 and 2018-2019. Three cropping regimes (monocropped wheat, monocropped faba bean, and intercropped wheat-faba bean) and three nitrogen levels N0 (0 kg N ha-1), N1 (50 kg N ha-1), and N2 (100 kg N ha-1) were evaluated. Compared with monocropping, intercropping (N0 level) reduced the incidence of stripe rust by 71–120 % and severity by 244–337 % in 1st and 2nd experiments respectively. In addition, the incidence of septoria was reduced by 236 % and severity by 276 %. Obviously, the intercrops significantly decreased the total weed biomass by more than 40 % in both experiments. Black aphid populations in faba bean were reduced by 80 %. In contrast, the nitrogen fertilizer increased the attack of diseases and black aphids. It is concluded that wheat-faba bean intercrops can be used as a method of reduction of inputs, reduction of environmental impacts of crops, and stability in the face of biotic factors.


diseases; faba bean; intercropping; nitrogen treatment; pests; sole crops; weeds; wheat

Full Text:



Aubert, G. (1978). Méthodes d’analyses des sols (2ème ed.). Centre régional de Documentation Pédagogique, 191 p. (in French).

Amossé, C., Jeuffroy, M.H., Celette, F., & David C. (2013). Relay-intercropped forage legumes help to control weeds in organic grain production. European Journal Agronomy, 49, 158-167. https://doi.org/10.1016/j.eja.2013.04.002

Baize, D. (2018). Guides des Analyses Courantes en Pédologie (3e éd.). INRA, 328 p. (in French).

Bedoussac, L., Journet, E.P., Hauggaard-Nielsen, H., Naudin, C., Corre-Hellou, G., Jensen, E S., & Justes, E. (2015). Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy for Sustainable Development, 35(3), 911‑935.https://doi.org/10.1007/s13593-014-0277-7

Boudreau, M.A. (2013). Diseases in intercropping systems. Annual Review of Phytopathology, 51, 499–519. https://doi.org/10.1146/annurev-phyto-082712-102246

Chen, Y.X., Li, L., Tang, L., Zheng, Y., Li, Y.J., & Zhang, C.C. (2013). Effect of nitrogen addition on nitrogen nutrition and strip rust occurrence of wheat in wheat/faba bean intercropping system. The Journal of Agriculture Science, 27(7), 1020–1028. https://doi.org/10.11869/hnxb.2013.07.1020

Corre-Hellou, G., Baranger, A., Bedoussac, L., Cassagne, N., Cannavacciuolo, M., Fustec, J., Elise Pelzer, E., & Piva, G. (2014). Interactions entre facteurs biotiques et fonctionnement des associations végétales. Innovations Agronomiques, 40, 25-42. (in French).

Dassou, A.G., & Tixier, P. (2016). Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis. Ecology and Evolution, 6, 1143–1153. https://doi.org/10.1002/ece3.1917

Devadasa, R., Simpfendorferb, S., Backhousec, D., & Lamb, D.W. (2014). Effect of stripe rust on the yield response of wheat to nitrogen. Crop Journal, 2, 201–206. https://doi.org/10.1016/j.cj.2014.05.002

Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy Sustainable Development, 28(1), 33-46. https://doi.org/10.1007/978-90-481-2666-8_28

Gardarin, A., Pigot, J., & Valantin-Morison, M. (2021). The hump-shaped effect of plant functional diversity on the biological control of a multi-species pest community. Scientific Reports, 11, 21635. https://doi.org/10.1038/s41598-021-01160-2

Gueguen, L., & Rombauts, P. (1961). Dosage du sodium, du potassium, du calcium et du magnésium par spectrophotométrie de flamme dans les aliments, le lait et les excreta. Annales de Biologie Animale, Biochimie, Biophysique, 1(1), 80–97 (in French). https://doi.org/10.1051/rnd/19611080

Guo, Z.P., Dong, K., Zhu, J.H., Ma, L.K., & Dong, Y. (2020). Effects of nitrogen management and intercropping on faba bean chocolate spot disease development. Crop Protection, 127, 104972. https://doi.org/10.1016/j.cropro.2019.104972

Hamzei, J., & Seyedi, M. (2015). Evaluation of the effects of intercropping systems on yield performance, land equivalent ratio, and weed control efficiency. Agricultural Research, 4(2), 202-207. https://doi.org/10.1007/s40003-015-0161-y

Hao, W., Ren, L., Ran, W., & Shen, Q. (2010). Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant and Soil, 336(1), 485‑497. https://doi.org/10.1007/s11104-010-0505-0

He, F. (2009). Effect of N rates on canopy microclimate and population health in irrigated rice. Agricultural Science Technology, 10, 79–83. https://doi.org/

ICARDA (1986). Screening Techniques for Disease Resistance in Faba Bean. Aleppo: International Center for Agricultural Research in the Dry Areas, 59.

Jiang, H., Zhao, P., Tang, L., Zheng, Y., & Xiao, J.X. (2012). Analysis and evaluation of yield advantages in wheat and faba bean intercropping system in yunnan province. Journal Yunnan Agriculture University, 27(5), 646–652. https://doi.org/

Konlan, S., Sarkodie-Addo, J., Kombiok, M.J., Asare, E., & Bawah I. (2013). Yield response of three groundnut (Arachis hypogaea L.) varieties intercropped with maize (Zea mays) in the guinea savanna zone of Ghana. Journal of Cereals Oilseeds, 6, 76-84. https://doi.org/ 10.5897/JCO2013.0112

Letourneau, D.K., Armbrecht, I., Rivera, B.S., Lerma, J.M., Carmona, E.J., & Daza, M.C. (2011). Does plant diversity benefit agroecosystems? a synthetic review. Ecological Applications, 21, 9-21. https://doi.org/10.1890/09-2026.1

Li, M., Li, R., Zhang, J., Liu, S., Hei, Z., & Qiu, S.A. (2019). Combination of rice cultivar mixed-cropping and duck co-culture suppressed weeds and pests in paddy fields. Basic Applied Ecology, 40, 67–77. https://doi.org/10.1016/j.baae.2019.09.003

Lopes, T., Hatt, S., Xu, Q., Chen, J., Liu, Y., & Francis F. (2016). Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control. Pest Management Science, 72, 2193–2202. https://doi.org/10.1002/ps.4332

Luo, C., Ma, L., Zhu, J., Guo, Z., Dong, K., & Dong, Y. (2021). Effects of nitrogen and intercropping on the occurrence of wheat powdery mildew and stripe rust and the relationship with crop yield. Frontiers in Plant Science, 12, 637393.

Luo, C., Lv, J., Guo, Z., & Dong, Y. (2021). Intercropping of faba bean with wheat under different nitrogen levels reduces faba bean rust and consequent yield loss. Plant disease, 106(9), 2370-2379. https://doi.org/10.1094/PDIS-11-21-2451-RE

Mamine, F., & Farès, M. (2020). Barriers and levels to developing wheat–pea intercropping in Europe: A Review. Sustainability, 12(17), 6962.https://doi.org/10.3390/su12176962

Mennan, H., Jabran, K., Zandstra, B.H., & Pala, F. (2020). Non-chemical weed management in vegetables by using cover crops. A Review Agronomy, 10(2), 257. https://doi.org/10.3390/agronomy10020257

Ndzana, R.A., Magro, A., Bedoussac, L., Justes, E., Journet, E.P., & Hemptinne J.L. (2014). Is there an associational resistance of winter pea-durum wheat intercrops towards Acyrthosiphon pisum Harris. Journal of Applied Entomology, 138(8), 577‑585. https://doi.org/10.1111/jen.12119

Ninković, V., Dahlin, I., Vučetić, A., Petrović-Obradović, O., Glinwood, R., & Webster, B. (2013). Volatile exchange between undamaged plants - a new mechanism effecting insect orientation in intercropping. PLoS POne, 8,1-9. https://doi.org/10.1371/journal.pone.0069431

Norsworthy, J.K., McClelland, M., Griffith, G., Bangarwa, S.K., & Still, J. (2011). Evaluation of cereal and Brassicaceae cover crops in conservation-tillage, enhanced, glyphosate-resistant cotton. Weed Technology, 25(1), 6-13. https://doi.org/10.1614/WT-D-10-00040.1

Parker, J.E., Rodriguez-Saona, C., Hamilton, G.C., & Snyder, W.E. (2013). Companion planting and insect pest control. INTECH Open Access Publisher. https://doi.org/10.5772/55044

Olsen, S.R., & Sommers L.E. (1982). Phosphorus. Page A. L. (ed.). Methods of Soil Analysis. Part 2. American Society of Agronomy, Soil Science Society of America, 403–430.

Poggio, S.L. (2005). Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agriculture, Ecosystems & Environment, 109(1-2), 48‑58. https://doi.org/10.1016/j.agee.2005.02.019

Rao, M.S., Rama Rao, C.A., Srinivas, K., Pratibha, G., Vidya Sekhar, S.M., Sree Vani, G., & Rizk, A.M. (2012). Effect of strip-management on the population of the aphid, aphis craccivora koch and its associated predators by intercropping faba bean, Vicia faba L. with coriander, Coriandrum sativum L. Egyptian Journal of Biological Pest Control, 21, 81-87.

Sammama, H., El kaoua, M., Hsissou, D., Latique, S., Selmaoui, K., & Alfeddy, M.N. (2021). The impact of wheat and faba bean intercrop on the competitive interactions, grain yield, biochemical parameters and mineral content of leaves. Zemdirbyste-Agriculture, 108(3), 233-240. https://doi.org/10.13080/z-a.2021.108.030

Saudy, H.S. (2015). Maize-cowpea intercropping as an ecological approach for nitrogen use rationalization and weed suppression. Archives of Agronomy and Soil Science, 61, 1-14. https://doi.org/10.1080/03650340.2014.920499

Sekamatte, B.M., Ogenga-Latigo, M., & Russell-Smith, A. (2003). Effects of maize-legume intercrops on termite damage to maize, activity of predatory ants and maize yields in Uganda. Crop Protection, 22(1), 87-93. https://doi.org/10.1016/S0261-2194(02)00115-1

Shalaby, S., & Fouad, A.H. (2016). Effect of intercropping agroecosystem on the population of black legume aphid, Aphis craccivora Koch and yield of faba bean crop. Journal of Entomology and Zoology Studies, 4(4), 1367-1371.

Sharaby, A., Abdel-Rahman, H., & Sabry, S. (2015). Moawad intercropping system for protection the potato plant from insect infestation. Ecologia Balkanica, 7, 87-92. http://eb.bio.uni-plovdiv.bg

Song, B., Tang, G., Sang, X., Zhang, J., Yao, Y., & Wiggins, N. (2013). Intercropping with aromatic plants hindered the occurrence of aphis citricola in an apple orchard system by shifting predator-prey abundances. Biocontrol Science and Technology, 3, 381-395. https://doi.org/ 10.1080/09583157.2013.763904

Shtaya, M.J., Emeran, A.A., Fernández-Aparicio, M., Qaoud, H.A., Abdallah, J., & Rubiales, D. (2021). Effects of crop mixtures on rust development on faba bean grown in Mediterranean climates. Crop Protection, 146, 105686. https://doi.org/10.1016/j.cropro.2021.105686

Sturm, D.J., Peteinatos, G., & Gerhards, R. (2018). Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Research, 58, 331–337. https://doi.org/10.1111/wre.12316

Sulvai, F., Chauque, B.J.M., Macuvele, D.L.P. (2016). Intercropping of lettuce and onion controls caterpillar thread, agrotis ipsilon major insect pest of lettuce. Chemical and Biological Technologies in Agriculture, 3, 28. https://doi.org/10.1186/s40538-016-0079-z

Victoria, G., Chadfield, A., Hartley, S.E., & Redeker, K.R (2022). Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases. New phtologist, 235, 2393–2405. https://doi.org/10.1111/nph.18302

Xiao, J.X., Yin, X.H., Ren, J.B., Zhang, M., Tang, L., & Zheng, Y. (2018). Complementation drives higher growth rate and yield of wheat and savesnitrogen fertilizer in wheat and faba bean intercropping. Field Crops Research, 221, 119–129. https://doi.org/ 10.1016/j.fcr.2017.12.009

Yang, W.T., Wang, X.W., Wang, J.W., & University, J.A. (2013). Crop-and soil nitrogen in legume-Gramineae intercropping system: research progress. Chinese Journal of Ecology, 32, 2480–2484. https://doi.org/ 10.13292/j.1000-4890.2013.0342

Yadollahi, P., Abad, A.R.B., Khaje, M., Asgharipour, M.R., & Amiri A. (2014). Effect of intercropping on weed control in sustainable agriculture. International Journal of Agriculture and Crop Sciences, 7(10), 683-686.

Zhang, C., Dong, Y., Tang, L., Zheng, Y., Makowski, D., Yu, Y., Zhang, F., & Werf, W.V.D. (2019). Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis. European Journal Plant Pathology, 154(4), 931-942. https://doi.org/10.1007/s10658-019-01711-4

Zhu, Y.Y., Chen, H.R., Fan, J.H., Wang, Y.Y., Li, Y., Chen, J.B., Fan, J.X., Yang, S.S., Hu, L.P., Leung, H., Mew, T.W., Teng, P.S., Wang, Z.H., & Mundt, C.C. (2000). Genetic diversity and disease control in rice. Nature, 406, 718–722. https://doi.org/10.1038/35021046

Zhu, J.H., Dong, K., Yang, Z.X., & Dong, Y. (2017a). Advances in the mechanism of crop disease control by intercropping. Chinese Journal Ecology, 36, 1117–1126. https://doi.org/10.13292/j.1000-4890.201704.016

Zhu, J., Dong, K., & Yang, Z. (2017b). Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system. Chinese Journal of Applied Ecology, 28, 3985–3993. https://doi.org/10.13287/j.1001-9332.201712.029

Zhu, J.H., Guo, Z.P., Dong, K., & Dong, Y. (2020). Effects of N application on nitrogen and potassium nutrition and stripe rust of wheat in an intercropping system. Chinese Journal Ecology and Agriculture, 28, 236–244. https://doi.org/10.13930/j.cnki.cjea.190473

Zillinsky, F.J. (1983). Les maladies communes des céréales à paille: Guide d’identification. Eds. CIMMYT, Mexico. 141p. (in French).

DOI: http://dx.doi.org/10.14720/aas.2023.119.1.2564


  • There are currently no refbacks.

Copyright (c) 2023 Hasnaa SAMMAMA, Mohamed Najib ALFEDDY, Driss HSISSOU, Mimoun EL KAOUA


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941