Breast muscle abnormalities in broiler chickens



In recent decades, global production of poultry meat has increased due to its affordable prices and good nutritional value. The latter has been achieved by intensive selection of broilers for increased growth rate, feed efficiency, breast yield and reduced abdominal fat deposition. On the other hand, intensive selection and increasing demand for poultry meat, as well as some environmental stressors, such as changes in environmental temperature, feeding regime, breeding technology, and improper handling procedures before slaughter, lead to increased susceptibility of animals to oxidative stress, resulting in poorer sensory and technological characteristics of chicken meat. As a result of intensive broiler production and the increase in breast muscle, various breast muscle abnormalities or myopathies have been observed. The most common ones include deep pectoral myopathy, pale, soft and exudative like meat, white striping, wooden-breast and spaghetti meat, which mainly affect the pectoralis major breast muscle and negatively influence the sensory and technological characteristics of breast meat. The muscle abnormalities have a detrimental effect on quality and nutritional value of meat, affect consumer compromise consumers acceptance, and cause economic losses in the meat processing industry.


poultry; broilers; animal nutrition; breast muscle; meat quality; myopathies


Adabi, S. G. in Soncu, E. D. (2019). White striping prevalence and its effect on meat quality of broiler breast fillets under commercial conditions. Journal of Animal Physiology and Animal Nutrition, 103(4), 1060–1069.

Aviagen. (2019). Breast muscle myopathies (BMM). Pridobljeno s

Baldi, G., Soglia, F., Mazzoni, M., Sirri, F., Canonico, L., Babini E., … Petracci M. (2018). Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers. Animal, 12(1), 164–173.

Baldi G., Soglia F. in Petracci M. (2020). Current status of poultry meat abnormalities. Meat and Muscle Biology, 4(2), 1–7.

Baldi, G., Soglia, F. in Petracci, M. (2021). Spaghetti meat abnormality in broilers: current understanding and future research directions. Frontiers in Physiology, 12, 1–7.

Bailey, R. A., Watson, K. A., Bilgili, S. F. in Avendano, S. (2015). The genetic basis of pectoralis major myopathies in modern broiler chicken lines. Poultry Science, 94, 2870–2879.

Barbut, S., Zhang, L. in Macrone, M. (2005). Effects of pale, normal, and dark chicken breast meat on microstructure, extractable proteins, and cooking of marinated fillets. Poultry Science, 84, 797–802.

Bianchi, B., Petracci, M., Franchini, A. in Cavani, C. (2006). The occurrence of deep pectoral myopathy in roaster chickens. Poultry Science, 85, 1843–1846.

Boerboom, G., Van Kempen, T., Navarro-Villa, A. in P´erez-Bonilla A. (2018). Unraveling the cause of white striping in broilers using metabolomics. Poultry Science, 97, 3977–3986.

Bowker, B. & Zhuang, H. (2016). Impact of white striping on functionality attributes of broiler breast meat. Poultry Science, 95, 1957–1965.

Cai, K., Shao, W., Campbell, Y. L., Nair, M. N., Suman, S. P., Beach, C. M., … Schilling, M. W. (2018). Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat. Poultry Science, 97, 337–346.

Caldas-Cueva, J. P., Mauromoustakos, A., Sun, X. in Owens, C. M. (2021). Use of image analysis to identify woody breast characteristics in 8-week-old broiler carcasses. Poultry Science, 100(4), 100890.

Caldas-Cueva, J. P. & Owens, C. M. (2020). A review on the woody breast condition, detection methods, and product utilization in the contemporary poultry industry. Journal of Animal Science, 98(7), 1–10.

Carvalho, R. H., Elza, I. I., Madruga, M. S., Martinez, S. L., Shimokomaki, M. in Estevez, M. (2017). Underlying connections between the redox system imbalance, protein oxidation and impaired quality traits in pale, soft and exudative (PSE) poultry meat. Food Chemistry, 215, 129–137.

Chatterjee, D., Zhuang, H., Bowker, B. C., Rincon, A. M. in Sanchez-Brambila, G. (2016). Instrumental texture characteristics of broiler pectoralis major with the wooden breast condition. Poultry Science, 95, 2449–2454.

Che, S., Wang, C., Varga, C., Barbut, S. in Susta L. (2022). Prevalence of breast muscle myopathies (spaghetti meat, woody breast, white striping) and associated risk factors in broiler chickens from Ontario Canada. PLOS ONE, 17(4), e0267019.

Dalle Zotte, A., Tasoniero, G., Puolanne, E., Remignon, H., Cecchinato, M., Catelli, E. in Cullere, M. (2017). Effect of “Wooden Breast” appearance on poultry meat quality, histological traits, and lesions characterization. Czech Journal of Animal Science, 62, 51–57.

Dong, M., Chen, H., Zhang, Y., Xu, Y., Han, M., Xu, X. in Zhou, G. (2020). Improvement of pale, soft, and exudative-like chicken meat: A review. Food and Bioprocess Technology, 13(8), 1280–1291.

Geronimo, B. C., Mastelini, S. M., Carvalho, R. H., Júnior, S. B., Barbin, D. F., Shimokomaki, M. in Ida, E. I. (2019). Computer vision system and near-infrared spectroscopy for identification and classification of chicken with wooden breast, and physicochemical and technological characterization. Infrared Physics & Technology, 96, 303–310.

Gonzalez-Rivas, P. A., Chauhan, S. S., Ha, M., Fegan, N., Dunshea, F. R. in Warner, R. D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Science, 162, 108025.

Karunanayaka, D. S., Jayasena, D. D. in Jo, C. (2016). Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast. Journal of Animal Science and Technology, 58, 27.

Kijowski, J. in Kupińska, E. (2012). Induction of DPM changes in broiler chickens and characteristics of myopathy symptoms. Bulletin of the Veterinary Institute in Pulawy, 56(2), 217–223.

Kijowski, J. in Kupińska, E. (2013). The evaluation of selected quality parameters of broiler chicken muscles with Deep Pectoral Myopathy (DPM) symptoms. Archiv für Geflügelkunde, 77, 102–108.

Kijowski, J., Kupińska, E., Stangierski, J., Tomaszewska-Gras, J. in Szablewski, T. (2014). Paradigm of deep pectoral myopathy in broiler chickens. World’s Poultry Science Journal, 70, 125–138.

Kong, F., Zhao, G., He, Z., Sun, J., Wang, X., Liu, D., … Wen, J. (2021). Serum creatine kinase as a biomarker to predict wooden breast in vivo for chicken breeding. Frontiers in Psysiology, 12, 711711.

Kuttappan, V. A., Brewer, V. B., Apple, J. K., Waldroup, P. W. in Owens, C. M. (2012a). Influence of growth rate on the occurrence of white striping in broiler breast fillets. Poultry Science, 91, 2677–2685.

Kuttappan, V. A., Goodgame, S. D., Bradley, C. D., Mauromoustakos, A., Hargis, B. M., Waldroup, P. W. in Owens, C. M. (2012b). Effect of different levels of dietary vitamin E (dl-α-tocopherol acetate) on the occurrence of various degrees of white striping on broiler breast fillets. Poultry Science, 91, 3230–3235.

Kuttappan, V. A., Lee, Y. S., Erf, G. F., Meullenet, J.-F. C., McKee, S. R. in Owens, C. M. (2012c). Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping. Poultry Science, 91, 1240–1247.

Kuttappan, V. A., Hargis, B. M. in Owens, C. M. (2016). White striping and woody breast myopathies in the modern poultry industry: A review. Poultry Science, 95, 2724–2733.

Lee, B. in Choi, Y. M. (2021). Research Note: Comparison of histochemical characteristics, chicken meat quality, and heat shock protein expressions between PSE-like condition and white-stripping features of pectoralis major muscle. Poultry Science, 100(8), 101230.

Lien, R. J., Bilgili, S. F., Hess, J. B. in Joiner, K. S. (2011). Finding answers to ‘green muscle disease’. Pridobljeno s (25. nov. 2022)

Lien, R. J., Bilgili, S. F., Hess, J. B. in Joiner, K. S. (2012). Induction of deep pectoral myopathy in broiler chickens via encouraged wing flapping. Journal of Applied Poultry Research, 21, 556–562.

Lobo V., Patil A., Phatak A. in Chandra N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Review, 4(8), 118–126.

Oba, A., de Almeida, M., Pinheiro, J. W., Ida E. I., Marchi, D. F., Soares, A. L. in Shimokomaki, M. (2009). The effect of management of transport and lairage conditions on broiler chicken breast meat quality and DOA (Death on Arrival). Brazilian Archives of Biology and Technology, 52.

Olivio, R., Soares, A. L., Ida, E. in Shimokomaki, M. (2001). Dietary vitamin E inhibits poultry PSE and improved meat functional properties. Journal of Food Biochemistry, 25, 271–275.

Pajohi-Alamoti, M., Khaledian, S. in Mohammadi, M. (2016). Study of green muscle disease in some condemned broiler chicken from Iran. Comparative Clinical Pathology, 15, 1193–1196.

Pampouille, E., Berri, C., Boitard, S., Hennequet-Antier, C., Beauclercq, A., Godet, E., … Le Bihan-Duval, E. (2018). Mapping QTL for white striping in relation to breast muscle yield and meat quality traits in broiler chickens. BMC Genomics, 19, 202.

Petracci, M. in Cavani, C. (2012). Muscle growth and poultry meat quality issues. Nutrients, 4, 1–12.

Petracci, M., Mudalal, S., Bonfiglio, A. in Cavani, C. (2013). Occurrence of white striping under commercial conditions and its impact on breast meat quality in broiler chickens. Poultry Science, 92, 1670–1675.

Petracci, M., Mudalal, S., Babini, E. in Cavani, C. (2014). Effect of white striping on chemical composition and nutritional value of chicken breast meat. Italian Journal of Animal Science, 13(1), 3138.

Petracci, M., Mudalal, S., Soglia, F. in Cavani, C. (2015). Meat quality in fast-growing broiler chickens. World‘s Poultry Science Journal, 71(2), 363–374.

Petracci, M., Soglia, F., Madruga, M., Carvalho, L., Ida, E. in Estévez, M. (2019). Wooden-breast, white striping, and spaghetti meat: causes, consequences and consumer perception of emerging broiler meat abnormalities. Comprehensive Reviews in Food Science and Food Safety, 18, 565–583.

Semenova, A. A., Kuznetsova, T. G., Nasonova, V. V., Nekrasov, R. V. in Bogolyubova, N. V. (2019). Myopathy as a destabilizing factor of meat quality formation. Theory and Practice of Meat Processing, 4(3), 24–31.

Sihvo, H. K., Immonen, K. in Puolanne, E. (2014). Myodegeneration with fibrosis and regeneration in the Pectoralis major muscle of broilers. Veterinary Pathology, 51(3), 619–623.

Sihvo, H. K., Linden, J., Airas, N., Immonen, K., Valaja, J. in Puolanne, E. (2017). Wooden breast myodegeneration of pectoralis major muscle over the growth period in broilers. Veterinary Pathology, 54(1), 119–128.

Sirri, F., Maiorano, G., Tavaniello, S., Chen, J., Petracci, M. in Meluzzi, A. (2016). Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poultry Science, 95, 1813–1824.

Soglia, F., Laghi, L., Canonico, L., Cavani, C. in Petracci, M. (2016a). Functional property issues in broiler breast meat related to emerging muscle abnormalities. Food Research International, 89, 1071–1076.

Soglia, F., Mudalal, S., Babini, E., Di Nunzio, M., Mazzoni, M., Sirri, F., … Pterracci, M. (2016b). Histology, composition, and quality traits of chicken Pectoralis major muscle affected by wooden breast abnormality. Poultry Science, 95, 651–659.

Soglia, F., Silva, A. K., Tappi, S., Lião, L. M., Rocculi, P., Laghi, L. in Petracci, M. (2019). Gaping of pectoralis minor muscles: magnitude and characterization of anemerging quality issue in broilers. Poultry Science, 98, 6194–6204.

Surai, P. F., Kochish, I. I., Fisinin, V. I. in Kidd, M. T. (2019). Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants (Basel), 8(7), 235.

Stangierski, J., Tomaszewska-Gras, J., Baranowska, H. M., Krzywdzińska-Bartkowiak, M. in Konieczny, P. (2019). The effect of deep pectoral myopathy on the properties of broiler chicken muscles characterised by selected instrumental techniques. European Food and Research Technology, 245, 459–467.

Tang, S., Yu, J., Zhang, M., Bao, E. (2013). Effects of different heat stress periods on various blood and meat quality parameters in young Arbor Acer broiler chickens. Canadian Journal of Animal Science, 93(4), 453–460.

Tasoniero, G., Zhuang, H., Gamble, G. R. in Bowker, B. C. (2020). Effect of spaghetti meat abnormality on broiler chicken breast meat composition and technological quality. Poultry Science, 99, 1724–1733.

Traffano-Schiffo, M. V., Castro-Giraldez, M., Herrero, V., Colom, R. J. in Fito, P. J. (2018). Development of a non-destructive detection system of Deep Pectoral Myopathy in poultry by dielectric spectroscopy. Journal of Food Engineering, 237, 137–145.

Trocino, A., Piccirillo, A., Birolo, M., Radaelli, G., Bertotto, D., Filiou, E. in Xiccato, G. (2015). Effect of genotype, gender and feed restriction on growth, meat quality and the occurrence of white striping and wooden breast in broiler chickens. Poultry Science, 94, 2996−3004.

Xing, T., Gao, F., Tume, R. K., Zhou, G. in Xu, X. (2019). Stress effects on meat quality: a mechanistic perspective. Comperhensive Reviews in Food Science and Food Safety, 18(2), 380–401.

Yalcin, S., Ozkan, S., Comert Acar, M. in Meral, O. (2019). The occurrence of deep pectoral myopathy in broilers and associated changes in breast meat quality. British Poultry Science, 59(1), 55–62.

Zaboli, G., Huang, X., Feng, X. in Ahn, D. U. (2019). How can heat stress affect chicken meat quality? – A review. Poultry Science, 98(3), 1551–1556.

Zhang, X., Virellia, To K., Jarvis, T. R., Campbell, Y. L., Hendrix, J. D., Suman, S. P. in Schilling, M. W. (2021). Broiler genetics influences proteome profiles of normal and woody breast muscle. Poultry Science, 100(4), 100994.

Zhang, J., Zhuang, H., Bowker, B., Stelzleni, A. M., Yang, Y., Pang, B., … Thippareddi, H. (2021b). Evaluation of multi blade shear (MBS) for determining texture of raw and cooked broiler breast fillets with the woody breast myopathy. Poultry Science, 100(6), 101123.



  • There are currently no refbacks.

Copyright (c) 2023 Manca PEČJAK PAL, Vida REZAR

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941