Inducing salt tolerance in sweet corn by magnetic priming

Soheil Karimi, Saeid ESHGHI, Saeid KARIMI, Saman HASAN-NEZHADIAN


This study evaluates seed germination and growth of sweet corn under NaCl stress (0, 50, and 100 mM), after exposing the seeds to weak (15 mT) or strong (150 mT) magnetic fields (MF) for different durations (0, 6, 12, and 24 hours). Salinity reduced seed germination and plant growth. MF treatments enhanced rate and percentage of germination and improved plant growth, regardless of salinity. Higher germination rate was obtained by the stronger MF, however, the seedling were more vigorous after priming with 15 mT MF. Proline accumulation was observed in parallel with the loss of plant water content under 100 mM NaCl stress. MF prevented proline accumulation by improving water absorption. Positive correlation between H2O2 accumulation and membrane thermostability (MTI) was found after MF treatments, which revealed that MF primed the plant for salinity by H2O2 signaling. However, over-accumulation of H2O2 after prolonged MF exposure adversely affected MTI under severe salt stress. In conclusion, magnetic priming for 6 hours was suggested for enhancing germination and growth of sweet corn under salt stress.


hydrogen peroxide; maize; malondialdehyde; plant water content; proline; seed germination; seedling growth

Full Text:



Ager, D. D., Radul, J. A. (1992). Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae. Mutation Research Letters, 283(4), 279-286. doi: 10.1016/0165-7992(92)90060-U

Aladjadjiyan A. (2002) Study of the influence of magnetic field on some biological characteristics of Zea mays, Journal of Central European Agriculture, 3(2): 89-94.

Anjum, M. A. (2008). Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. Acta Physiologiae Plantarum, 30(1), 43-52. doi:10.1007/s11738-007-0089-3

Arora, R., Pitchay, D. S., Bearce, B. C. (1998). Water‐stress‐induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins?. Physiologia Plantarum, 103(1), 24-34. doi: 10.1034/j.1399-3054.1998.1030104.x

Arfan, M., Athar, H. R., Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?. Journal of Plant Physiology, 164(6), 685-694. Doi: 10.1016/j.jplph.2006.05.010

Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361-376. doi:10.1078/0367-2530-00165

Ashraf, M., Rauf, H. (2001). Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta Physiologiae Plantarum, 23(4), 407-414. doi: 10.1007/s11738-001-0050-9

Atak, Ç., Çelik, Ö., Olgun, A., Alikamanoğlu, S., Rzakoulieva, A. (2007). Effect of magnetic field on peroxidase activities of soybean tissue culture. Biotechnology & Biotechnological Equipment, 21(2), 166-171. doi: 10.1080/13102818.2007.10817438

Bänziger, M., Setimela, P. S., Hodson, D., Vivek, B. (2006). Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agricultural Water Management, 80(1), 212-224. doi: 10.1016/j.agwat.2005.07.014

Bates, L. S., Waldren, R. P., Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207. doi:10.1007/BF00018060

Cakmak T., Dumlupinar R., Erdal S. (2010) Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions, Bioelectromagnetics, 31(2): 120-129. doi: 10.1002/bem.20537

Cha-Um, S. Kirdmanee, C. (2009) Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pakistan Journal of Botany, 41(1), 87-98.

Chinnusamy, V., Jagendorf, A., Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2), 437-448. doi:10.2135/cropsci2005.0437

Cuartero, J., Bolarin, M. C., Asins, M. J., Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57(5), 1045-1058. doi: 10.1093/jxb/erj102

de Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A. (2005). Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54(1), 69-76. doi: 10.1016/j.envexpbot.2004.06.004

Demiral, T., Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi: 10.1016/j.envexpbot.2004.03.017

Dhawi, F., Al-Khayri, J. M. (2011). Magnetic field induced biochemical and growth changes in date palm seedlings. In S. M. Jain, J. M. Al-Khayri & D. V. Johnson Date Palm Biotechnology (pp. 287-309). Netherlands, Springer. Doi: 10.1007/978-94-007-1318-5_15

Florez, M., Carbonell, M. V., Martínez, E. (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 59(1), 68-75. doi: 10.1016/j.envexpbot.2005.10.006

Foyer, C. H., Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment, 28(8), 1056-1071. doi: 10.1111/j.1365-3040.2005.01327.x

Foyer, C. H., Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93-100. doi:

Garcia R. F., Arza P. L. (2001) Influence of a stationary magnetic field on water relations in lettuce seeds Part I: theoretical considerations, Bioelectromagnetics, 22: 589-595.

Gechev, T. S., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V., Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences CMLS, 59(4), 708-714. doi: 10.1007/s00018-002-8459-x

Heath, R. L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1

Iqbal, M., Ashraf, M. (2010). Changes in hormonal balance: a possible mechanism of pre‐sowing chilling‐induced salt tolerance in spring wheat. Journal of Agronomy and Crop Science, 196(6), 440-454. Doi: 10.1111/j.1439-037X.2010.00434.x

ISTA, (2004) International rules for seed testing, International seed test association. Zurich Switzerland.

Jacoby, R. P., Taylor, N. L., Millar, A. H. (2011). The role of mitochondrial respiration in salinity tolerance. Trends in Plant Science, 16(11), 614-623. Doi: 10.1016/j.tplants.2011.08.002

Karimi, S., Hojati, S., Eshghi, S., Moghaddam, R. N., Jandoust, S. (2012). Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stress induced in vitro. Scientia Horticulturae, 137, 95-99. doi: 10.1016/j.scienta.2012.01.018

Lin, J., Wang, J., Li, X., Zhang, Y., Xu, Q., Mu, C. (2011). Effects of saline and alkaline stresses in varying temperature regimes on seed germination of Leymus chinensis from the Songnen Grassland of China. Grass and Forage Science, 66(4), 578-584. doi: 10.1111/j.1365-2494.2011.00818.x

Moradi, F. Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99(6), 1161-1173. Doi: 10.1093/aob/mcm052

Piacentini, M. P., Fraternale, D., Piatti, E., Ricci, D., Vetrano, F., Dachà, M., & Accorsi, A. (2001). Senescence delay and change of antioxidant enzyme levels in Cucumis sativus L. etiolated seedlings by ELF magnetic fields. Plant Science, 161(1), 45-53. doi: 10.1016/S0168-9452(01)00380-6

Podleœny, J., Misiak, L., Podleœna, A., Pietruszewski, S. (2005). Concentration of free radicals in pea seeds after pre-sowing treatment with magnetic field. International Agrophysics, 19(3), 243-249.

Podleoeny, J., Pietruszewski, S., Podleoena, A. (2004). Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions. International Agrophysics, 18, 65-71.

Ramoliya, P. J., Patel, H. M., Joshi, J. B., Pandey, A. N. (2006). Effect of salinization of soil on growth and nutrient accumulation in seedlings of Prosopis cineraria. Journal of Plant Nutrition, 29(2), 283-303. doi: 10.1080/01904160500476806

Robison, J. G., Pendleton, A. R., Monson, K. O., Murray, B. K., O'Neill, K. L. (2002). Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics, 23(2), 106-112. doi: 10.1002/bem.103

Ružič, R., Jerman, I. (2002). Weak magnetic field decreases heat stress in cress seedlings. Electromagnetic Biology and Medicine, 21(1), 69-80. doi: 10.1081/JBC-120003112

Sahebjamei, H., Abdolmaleki, P., Ghanati, F. (2007). Effects of magnetic field on the antioxidant enzyme activities of suspension‐cultured tobacco cells. Bioelectromagnetics, 28(1), 42-47. Doi: 10.1002/bem.20262

Shani, U., Ben-Gal, A. (2005). Long-term response of grapevines to salinity: osmotic effects and ion toxicity. American Journal of Enology and Viticulture, 56,148-154.

Shenker, M., Ben-Gal, A., Shani, U. (2003). Sweet corn response to combined nitrogen and salinity environmental stresses. Plant and Soil, 256(1), 139-147. doi: 10.1023/A:1026274015858

Stange, B. C., Rowland, R. E., Rapley, B. I., Podd, J. V. (2002). ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics, 23(5), 347-354. doi: 10.1002/bem.10026

Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C., Gruissem, W., ... Van Breusegem, F. (2005). Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiology, 139(2), 806-821. doi: 10.1104/pp.105.065896

Vashisth, A., Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 167(2), 149-156. doi: 10.1016/j.jplph.2009.08.011

Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59-66. doi: 10.1016/S0168-9452(99)00197-1

Xi G., Fu Z. D., Ling J. (1994) Change of peroxidase activity in wheat seedlings induced by magnetic field and its response under dehydration condition, Acta Botanica Sinica, 36: 113-118.

Yao, Y., Li, Y., Yang, Y., Li, C. (2005). Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environmental and Experimental Botany, 54(3), 286-294. doi: 10.1016/j.envexpbot.2004.09.006

Yoshida, T., Mogami, J., Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 21, 133-139. Doi: 10.1016/j.pbi.2014.07.009

Zmyslony, M., Palus, J., Jajte, J., Dziubaltowska, E., Rajkowska, E. (2000). DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50 HZ). Mutation Research, 453, 89–96. Doi: 10.1016/S0027-5107(00)00094-4



Copyright (c) 2017 Soheil Karimi, Saeid ESHGHI, Saeid KARIMI, Saman HASAN-NEZHADIAN

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941