Allelopathic effect of medicinal plant Cannabis sativa L. on Lactuca sativa L. seed germination



In order to examine allelopathic effect of Cannabis sativa L. on germination capability and seedling growth of Lactuca sativa L., a study was performed in laboratory conditions. Treatments were set up in randomised block design in four replications for each of four concentration ranges of 25, 50, 75 and 100 % of aqueous extract made of shoot parts and 4 identical extract concentrations made of root of cannabis. Control variant was lettuce seed treated by distilled water. During the studies shoot and seminal root length of lettuce seedlings were measured after treatments with different concentrations of extracts made of root and shoot parts of cannabis, and the obtained values were compared with the control. The obtained results suggest that the extract from the shoot parts of cannabis in high concentrations of 75 and 100 % had inhibiting effect to the germination indices while the extract from the root had no statistically significant effect on germination of lettuce seeds. Extract made of root part of cannabis showed also stimulatory effect to shoot and seminal root length of lettuce seedlings in extract concentrations of 50, 75 and 100 %.


allelopathy; biological competition; lettuce; Lactuca sativa; cannabis; Cannabis sativa; germination; extracts

Full Text:



Ameh S.J., Obodozie O., Inyang U. S., Abubakar M.S., Garba M. 2010. Current phytotherapy - A perspective on the science and regulation of herbal medicine. Journal of Medicinal Plants Research. 4(2): 72-81

Anjum A.U., Hussain Z., Yousaf F.K. and Umer A. 2010. Evaluation of allelopathic action of some selected medicinal plant on lettuce seeds by using sandwich method. J. Med. Plants Res. 4: 536-541

Barbosal G.E., Vânia R.P., Sérgio T.M. 2008. Allelopathic evidence in Brachiaria decumbens and its potential to Invade the Brazilian Cerrados. Rua do Matão, Travessa 14; Cidade Universitá. 51(4):825-831

Bonner J. 1950. The role of toxic substances in interaction of higher plants. Bot. Rev. 16: 51-65, doi: 10.1007/BF02879785

Bu H.Y., Chen X.L., Wang Y.F. 2007. Germination time, other plant traits and phylogeny in an alpine meadow on the eastern Qinghai-Tibet plateau. Community Ecology. 8: 221 – 227, doi: 10.1556/ComEc.8.2007.2.8

Chon S.U., Choi S.K., Jung S., Jang H.G., Pyo B.S., Kim S.M. 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21: 1077-1082, doi: 10.1016/S0261- 2194(02)00092-3

Demos E. K., Woolwine M., Wilson R. H., McMillan, C. 1975. The effect of ten phenolic compounds on hypocotyl growth and mitochondrial metabolism of mungbean. American Journal of Botany. 62:97- 102, doi: 10.2307/2442083

Einhelling F.A. 1995. Characterization of mechanisms of Allelopathy Modeling and experimental approaches. In: cheng Idergit HH and Dakshini KMM. (eds), allelopathy, organism, processes and applications. American Chemical Society, Washington, pp 132-141

Elemar V., Filho V. 2005. Allelopathic effects of aconitic acid on wild poinsettia (Euphorbia heterophylla) and morningglory (Ipomoea grandifolia). Brazilian Society on Weed Science Congress, 40(1):217

Evenari M. 1961. Chemical influence of other plants (allelopathy Handbuch der pflanzen-Physiol. 16: 691-736

Figueroa J.A., Armesto J. J. 2001. Community-wide germination strategies in a temprate rainforest of southern chile: ecological and evolutionary correlates. Austrulian Journal of Botany 49: 411–425, doi: 10.1071/BT00013

Fischer R.F., Woods R.A. , Glavicic M.R. 1978. Allelopathic effects of goldrod and ashes on young sugar maple. Canadian J. Res. 8: 1-9, doi: 10.1139/x78-001

Fujii Y., Parvez S.S., Parvez M.M., Ohmae Y., Iida, O. 2003. Screening of medicinal plant species for allelopathic activity using Sandwich method. Weed Biol. Manage. 3: 233-241, doi: 10.1046/j.1444- 6162.2003.00111.x

Fujii Y., Shibuya T., Nakatani K., Itani T., Hiradate S.M., Parvez M. 2004. Assessment method for allelopathic effect from leaf litter leachates. Weed Biol. Manage. 4: 19-23, doi: 10.1111/j.1445- 6664.2003.00113.x

Ghareib H.R.A., Abdelhamed M.S., Ibrahim O.H. 2010. Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants.Weed Biol. Manage. 10: 64–72, doi: 10.1111/j.1445-6664.2010.00368.x

Gill G., Anoliefo L.S., Iduoze U.V. 2009. Allelopathic effects of aqueous extract from Siam Weed on the growth of Cowpea. Department of Botany, University of Benin, Benin City, Nigeria 3rd . edi. pp. 3-20

Han C.M., Pan K.W., Wu N., Wang J.C., Li W. 2008. Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. Sci. Hortic. 116(3): 330-336, doi: 10.1016/j.scienta.2008.01.005

Hegab M.M., Khodary S.E.A., Hammouda O., Ghareib H. R. 2008. Autotoxicity of chard and its allelopathic potentiality on germination and some metabolic activities associated with growth of wheat seedlings. Afr. J. Biotechnol. 7: 884–892

Inderijt I., Duke S.O. 2003. Ecophysiological aspects of allelopathy. Planta 217: 529-539, doi: 10.1007/s00425-003-1054-z

Ishaque M., Shahan M.N.I. 1998. Survey and domestication of wild medicinal plants of Sindh. Survey report. KAKC, Islamabad Pakistan pp. 2-3

Lavabre E.M. 1991. Weed control, McMillan Education Ltd. London. pp. 1-10

Lee S.B., Kim K.H., Hahn S.J., Chung I.M. 2003. Evaluation of screening methods to determine the allelopathic potential of rice varieties against Echinochloa crus-galli Beauv. var. oryzicola Ohwi, Allelopathy J. 12: 37-52

Li H.Y., Pan K.W., Liu Q., Wang J.C. 2009. Effect of enhanced ultraviolet-B on allelopathic potential of Zanthoxylum bungeanum . Sci. Hortic. 119(3): 310- 314, doi: 10.1016/j.scienta.2008.08.010

Molisch H. 1937. Der einfluss einer pflanze auf die andere Allelopathie. The role of chemical inhibition in Vegetational. pp. 99-106

Oyun M. B. 2006. Allelopathic potentialities of Gliricidia sepium and Acacia auriculiformis on the germination and seedling vigour of maize. American Journal of Agricultural and Biological Sciences. 1(3): 44 – 47, doi: 10.3844/ajabssp.2006.44.47

Pitman A.R., Duke W.B. 1978. Allelopathy in agroecosystem. Annu. Rev. Phytopathol. 16: 431- 451, doi: 10.1146/

Ranalli P. 1999. Agronomical and physiological advances in hemp crops. In:Advances in Hemp Research Haworth Press Binghamt, NY, USA, pp.61-84

Rice E.L. 1971. Possible role of Ambrosia psilostachya patterning and succession in old fields. Am. Midland Naturalist. 86: 344-357, doi: 10.2307/2423628

Rice E. L. 1984. Allelopathy. II edition. New York: Academic Press. 421

Sun B., Tan J., Wan Z., Gu F., Zhu M. 2006. Allelopathic effects of extracts from Solidago canadensis L. against seed germination and seedling growth of some plants. J. Environ. Sci. 18:304-309

Wahab A., Niel A.S., Rice E.L. 1967. Plant inhibition by Johnson grass and its possible significance in old field succession. Bull. Torrey Bot Club, 94: 486-487, doi: 10.2307/2483566

Whittaker R.H. 1970. The biochemical ecology of higher plants. In Sondheimer, E. and B. Simeone (eds.), Chemical Ecology, Academic Press, N.Y., USA, pp. 43-70, doi: 10.1016/b978-0-12-654750- 4.50009-8

Wu G.L., Du G.Z. 2007. Germ ination is related to seed mass in grasses (Poaceae) of the eastern Qinghai – Tibetan plateau, China. Nordic Journal of Botany 25: 361 – 365, doi: 10.1111/j.0107- 055X.2007.00179.x



  • There are currently no refbacks.

Copyright (c) 2015 Acta agriculturae Slovenica


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY-NC-ND 4.0 License.


eISSN 1854-1941