Potential applicaton of β-galactosidase in food science and nutrition

Nika ŽIBRAT, Mihaela SKRT, Polona JAMNIK


β-galactosidase is an enzyme with hydrolytic and transgalactosylation activity. The origin of the enzyme dictates the balance between both activities. Industrially used β-galactosidases are obtained with recombinant production from filamentus funghi Aspergillus sp. and yeasts Kluyveromyces sp. Recently thermostabile β-galactosidases have been subject of many research. The enzyme can be industrially used in free or immobilized form. Immobilization often provides better stability, reusability and lower expenses. Application of β-galactosidase is most common in food processing and nutrition, it is also used in medicine and ecology. Hydrolytic activity of the enzyme has long been used for reducing lactose content in milk, while transgalactosylitic activity is used for synthesis of products such as galactooligosaccharides, lactosucrose and others. The latter have a great potential in food industry for obtaining products with reduced lactose content and increasing of nutritional value by adding dietetic fibers such as galactooligosaccharides. Despite the potential it is vital that reaction mechanisms become better understood and optimization is in place in order to reach the usability of this enzyme at industrial level.


human nutrition; food industry; enzymes; beta-galactosidase


Bailey, R. B., Benitez, T., Woodward, A. (1982). Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation. Applied and Environmental Microbiology, 44, 631–639.

Beccera, M., Prado, S. D., Siso, M. I., Cerdan, M. E. (2001). New secretory strategies for Kluyveromyces lactis beta-galactosidase. Protein Engineering, Design and Selection, 14, 379–386. https://doi.org/10.1093/protein/14.5.379

Cauich-Rodriguez, J. V., Deb, S., Smith, R. J. (1996). Characterization of hydrogel blends of poly(vinyl pyrrolidone) and poly(vinyl alcohol-vinyl acetate). Journal of Materials Science: Materials and Medicine, 7(5), 269–272. https://doi.org/10.1007/BF00058565

Chen, W., Chen, H., Xia, Y., Yang, J., Zhao, J., Tian, F., Zhang, H. P., Zhang, H. (2009). Immobilization of recombinant thermostable beta-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. Journal of Dairy Science, 92, 491–498. https://doi.org/10.3168/jds.2008-1618

Chen, W., Chen, H., Xia, Y., Zhao, J., Tian, F., Zhang, H. (2008). Production, purification and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. Journal of Dairy Science, 91, 1751–1758. https://doi.org/10.3168/jds.2007-617

Cheng, C., Yu, M., Cheng, T., Sheu, D., Duan, K., Tai, W. (2006). Production of high-content galacto-oligosaccharide by enzyme catalysis and fermentation with Kluyveromyces marxianus. Biotechnology Letters, 28(11), 793–797l. https://doi.org/10.1007/s10529-006-9002-1

Cieśliński, H., Kur, J., Bialkowska, A., Baran, I., Makowski, K., Turkiewicz, M. (2005). Cloning, expression, and purification of a recombinant cold-adapted beta-galactosudase from antarctic bacterium Pseudoaltermonas sp. 22b. Protein Expression and Purification, 39, 27–34. https://doi.org/10.1016/j.pep.2004.09.002

Córdova, A., Astudillo, C., Santibañez, L., Cassano, A., Ruby-Figueroa, R., Illanes, A. (2017). Purification of galacto-oligosaccharides (GOS) by three-stage serial nanofiltration units under critical transmembrane pressure conditions. Chemical Engineering Research and Design, 117, 488–499. https://doi.org/10.1016/j.cherd.2016.11.006

Coté, A., Brown, W. A., van Walsum, G. P. (2004). Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol. Journal of Dairy Science, 87, 1608–1620. https://doi.org/10.3168/jds.S0022-0302(04)73315-9

Crittenden, R., Playne, M. (2002). Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis. Applied Microbiology and Biotechnology, 58(3), 297–302. https://doi.org/10.1007/s00253-001-0886-3

Daabrowski, S., Sobiewska, G., Maciuńska, J., Synowiecki, J., Kur, J. (2000). Cloning, expression, and pufirication of the His(6)-tagged thermostable beta-galactosudase from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme. Protein Expression and Purification, 19, 107–112. https://doi.org/10.1006/prep.2000.1231

Dagbagli, S., Goksungur, Y. (2008). Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electronic Journal of Biotechnology, 11(4). https://doi.org/10.2225/vol11-issue4-fulltext-12

Delzenne, N. M., Kok, N. N. (2003). Oligosaccharides: state of the art. British Journal of Nutrition, 62, 177–182. https://doi.org/10.1079/PNS2002225

Dίez-Municio, M., Herrero, M., Olano, A., Moreno, F. J. (2014). Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases. Microbial Biotechnology, 7(4), 315–331. https://doi.org/10.1111/1751-7915.12124

Domingues, L., Lima, N., Teixeira, J. A. (2005). Lactose hydrolysis by β-galactosidase production by yeast in a continuous high cell density reactor. Process Biochemistry, 40, 1151–1154. https://doi.org/10.1016/j.procbio.2004.04.016

Domingues, L., Teixeira, J. A., Penttilä, M., Lima, N. (2002). Construction of a flocculent Saccharomyces cerevisiae strain secreting high levels of Aspergilus niger beta-galactosidase. Applied Microbiology and Biotechnology, 58, 645–650. https://doi.org/10.1007/s00253-002-0948-1

Duan, X., Shubing, H., Xuhui, Q., Zhengbiao, G., Jing, W. (2017). Optimal extracellular production of recombinant Bacillus circulans β-galactosidase in Escherichia coli BL21(DE3). Process Biochemistry, 53, 17–24. https://doi.org/10.1016/j.procbio.2016.11.008

Duarte, L. S., Schöffer, J. N., Lorenzoni, A. S. G., Rodrigues, R. C., Rodrigues, E., Hertz, P. H. (2017). A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase. Process Biochemistry, 1–15. https://doi.org/10.1016/j.procbio.2017.01.015

Dwevedi, A., Kayastha, A. M. (2009). Optimal immobilization of β-galactosidase from Pea (PsBGal) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresource Technology, 100, 2667–2675. https://doi.org/10.1016/j.biortech.2008.12.048

Elnashar, M., Yassin M. A., Moneim, A. E. A., Bary, E. M. A. (2010). Surprising Performance of Alginate Beads for the Release of Low-Molecular-Weight Drugs. Journal of Applied Polymer Science, 116(5), 3021–3026. https://doi.org/10.1002/app.31836

Fan, Y., Hua, X., Feng, Q. S., Dong, J., Zhao, W., Jin, Z, Yang, R. (2015). Cloning, expression and structural stability of a cold-adapted β-galactosidase from Rahnella sp. R3. Protein Expression and Purification, 115, 158–164. https://doi.org/10.1016/j.pep.2015.07.001

Gänzle, M. G., Loponen, J., Gobbetti, M. (2008). Proteolysis of sourdough fermentations: Mechanisms and potential for improved bread quality. Trends in Food Science and Technology, 19, 513–521. https://doi.org/10.1016/j.tifs.2008.04.002

Geiger, B., Nguyen, H. M., Weing, S., Nguyen, H. A., Lorenz, C., Kittl, R., … Nhuyen, T. H. (2016). From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochemical Engineering Journal, 116, 45–53. https://doi.org/10.1016/j.bej.2016.04.003

Genari, A. N., Passos F. V., Passos F. M. (2003). Configuration of a bioreactor for milk lactose hydrolysis. Journal of Dairy Science, 86, 2783–2789. https://doi.org/10.3168/jds.S0022-0302(03)73875-2

González-Delgado, I., López, Muñoz, M. J., Morales, G., Segura, Y. (2016). Optimisation of the synthesis of high galacto-oligosaccharides (GOS) from lactose with β-galactosidase from Kluyveromyces lactis. Intertnational Dairy Journal, 61, 211–219. https://doi.org/10.1016/j.idairyj.2016.06.007

Gosling, A, Stevens, G. W., Barber A. R., Kentish S. E., Gras, S. L. (2010). Recent advances refining galactooligosaccharide production from lactose. Food chemistry, 121(2), 307–318. https://doi.org/10.1016/j.foodchem.2009.12.063

Grossova, Z., Rosenberg., M., Rebroš, M. (2008). Perspectives and application of immobilised beta-galactosidase in food industry – a review. Chech Journal of Food Sciences, 26(1), 1–14.

Guerrero, C., Vera, C., Conejeros, R., Illanes, A. (2015). Transgalactosylation and hydrolytic activies of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70, 9–17. https://doi.org/10.1016/j.enzmictec.2014.12.006

Guerrero, C., Vera, C., Illanes, A. (2017). Synthesis of lactulose in batch and repeated-batch operation with immobilized β-galactosidase in different agarose functionalized supports. Bioresurce Technology, 230, 56–66. https://doi.org/10.1016/j.biortech.2017.01.037

Guerrero, C., Vera, C., Plou, F., Illanes, A. (2011). Influence of reaction conditions on the selectiviry of the synthesis of lactulose with microbial β-galactosidases. Journal of Molecular Catalysis B: Enzymatic, 72(3–4), 206–212. https://doi.org/10.1016/j.molcatb.2011.06.007

Guimarães, P. M. R., Teixeira, J. A., Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorization of cheese whey. Biotechnology Advances, 28, 375–384. https://doi.org/10.1016/j.biotechadv.2010.02.002

Hamilton-Miller, J. M. (2004). Probiotics and prebiotics in the elderly. Postgraduate Medical Journal, 80(946), 447–451. https://doi.org/10.1136/pgmj.2003.015339

Heyman, M. B. (2006). Lactose intolerance in infants, children and adolescents. Pediatrics, 118 (3), 1279–1286. https://doi.org/10.1542/peds.2006-1721

Hsu, C. A., Yu, R. C., Chou, C. C. (2005). Production of beta-galactosidase by Bifidobacteria as influenced by various culture conditions. International Journal of Food Microbiology, 104(2), 197–206. https://doi.org/10.1016/j.ijfoodmicro.2005.02.010

Huerta, L. M., Vera, C., Guerrero, C., Wilson, L., Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidase from Aspergillus oryzae. Process Biochemistry, 46, 245–252. https://doi.org/10.1016/j.procbio.2010.08.018

Husain, Q. (2010). Beta galactosidases and their potential applications: a review. Critical Reviews in Biotechnology, 30 (1), 41–62. https://doi.org/10.3109/07388550903330497

Institute for Quality and Efficiency in Health Care. (2015). Lactose intolerance: Overview. IQWiG. Pridobljeno iz https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0072452/

Jin, Y., Parashar, A., Mason, B., Bressler., D. C. (2016). Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production. Bioresource Technology, 221, 616–624. https://doi.org/10.1016/j.biortech.2016.09.063

Jokar, A. in Karbassi, A. (2009). Determination of proper conditions fort the production of crude beta-galactosidase using Lactobacillus delbrueckii ssp. bulgaricus. Journal of Agricultural Science and Technology, 11, 301–308.

Jokar, A., Karbassi, A. (2011). In-house Production of lactose-hydrolysed milk by beta-galactosidase from Bacillus bulgaricus. Journal of Agrocultural Science and Technology, 13, 577–584.

Kishore, D., Kayastha, A. M. (2012). Optimisation of immobilisation conditions for chich pea β-galactosidase (CpGAL) to alkylamine glass using response surface methodology and its applicatons in lactose. Food chemistry, 143, 1650–1657. https://doi.org/10.1016/j.foodchem.2012.03.055

Klein, M. P., Hackenhaar, C. R., Lorenzoni, A. S. G., Rodrigues, R. C., Costa, T. M. H., Ninow, J. L., Hertz, P. F. (2016). Chitosan crosslinked with genipin as support matrix for application on food process: Support characterization and of β-D-galactosidase immobilization. Carbohydrate Polymers, 137, 184–190. https://doi.org/10.1016/j.carbpol.2015.10.069

Kosseva, M. R., Panesar, P. S., Kaur, G., Kennedy, J. F. (2009). Use of immobilised biocatalysts in the processing of cheese whey. International Journal of Biological Macromolecules, 45, 437–447. https://doi.org/10.1016/j.ijbiomac.2009.09.005

Krajewska, B. (2004). Application of chitin – and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology, 35(2–3), 126–139. https://doi.org/10.1016/j.enzmictec.2003.12.013

Li, X. E., Lopetcharat, K., Qiu, Y., Drake, M. A. (2015). Sugar reduction of skim chocolate milk and viability of alternative sweetening trough lactose hydrolysis. Journal of Dairy Science, 98, 1455–1466. https://doi.org/10.3168/jds.2014-8490

Li, Y., Lu, L., Wang, H., Xu, X., Xiao, M. (2009). Cell surface engineering of a β-galactosidase for galactooligosaccharide synthesis. Applied and environmental microbiology, 75(18), 5938–5942. https://doi.org/10.1128/AEM.00326-09

Lyons, T. P., Cunningham, J. D. (1980). Fuel alcohol from whey. American Dairy Products Review, 42(11), 42A–42E.

Mahdian, S. M. A., Karimi, E., Tanipour, M. H., Parizadeh, S. M. R., Ghayour-Mobarhan, M., Bazaz, M. M., Mashkani, B. (2016). Expression of a functional cold active β-galactosidase from Planococcus sp-L4 in Pichia pastoris. Protein Expression and Purification, 125, 19–25. https://doi.org/10.1016/j.pep.2015.09.008

Muzzarelli, A. A. R. (2009). Carbohydrate polimers, 77(1), 1–9.

Neri, D. F. M., Balcao, V. M., Carneiro-da-Cunha, M. G., Carvalho, Jr L. B., Teixeira, J. A.. (2008). Immobilization of β galactosidase from Kluyveromyces lactis onto a polysiloxane-polyvinyl alcohol magnetic (mPOS-PVA) composite for lactose hydrolysis. Catalysis Communications, 4, 234–239. https://doi.org/10.1016/j.catcom.2008.05.022

Neri, D. F. M., Balcão, V. M., Costa, R. S., Rocha, I. C. A. P., Ferreira, E. M. F. C., Torres, D. P. M., Rodrigues, R. D. M., … Teixieira, J. A. (2009). Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae -galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chemistry, 115(1), 92–99. https://doi.org/10.1016/j.foodchem.2008.11.068

Obed Otieno, D. (2010). Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidase. Comprehensive Reviews In Food Science and Food Safety, 9, 471–482. https://doi.org/10.1111/j.1541-4337.2010.00121.x

Oliveira, C., Giumarães M.R. P., Domingues, L. (2011). Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnology Advances, 29, 600–609. https://doi.org/10.1016/j.biotechadv.2011.03.008

Pan, Q., Zhu, J., Liu, L., Chong, Y., Hu, F., Li, J. (2010). Functional identificaton of a putative beta-galactosidase gene in the special lac gene cluster of Lactobacillus acidophilus. Current Microbiology, 60, 172–178. https://doi.org/10.1007/s00284-009-9521-9

Panesar P. S., Panesar, R., Singh, R. S., Kennedy, J. F. in Kumar, H. (2006). Microbial production, immobilization and applications of β-galactosidase in food processing industries. Journal of Chemical Technology and Biotechnology, 81, 530–543. https://doi.org/10.1002/jctb.1453

Panesar, P. S., Kumari, S., Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research, 16 str. https://doi.org/10.4061/2010/473137

Panesar, R., Panesar, P. S., Singh, R. S., Bera, M. B. (2007). Applicability of alginate entrapped yeast cells for the production of lactose-hydrolyzed milk. Journal of Food Process Engineering, 30(4), 472–484. https://doi.org/10.1111/j.1745-4530.2007.00127.x

Patel, S., Goyal, A. (2010). The current trends and future perspectives of prebiotics research: a review. 3 Biotech, 2(2), 115–125. https://doi.org/10.1007/s13205-012-0044-x

Richmond, M. L., Gray, J. I., Stine, C. M. (1981). β galactosidase: review of recent research related to technological application, nutritional concerns, and immobilization. Journal of Dairy Science, 64, 1759–1771. https://doi.org/10.3168/jds.S0022-0302(81)82764-6

Rueda, N., Dos Santos, C. S., Rodrigues, M. D., Albuquerque, T. L., Barbosa, O., Torres, R., Ortiz, C., Fernandez-Lafuente, R. (2016). Reversible immobilisation of lipases on ocryl-glutamic agarose beads: a mixed absorbtion that reinforces enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 128, 10–18. https://doi.org/10.1016/j.molcatb.2016.03.002

Sabater, C., Prodanov, M., Olano, A., Corzo, N., Monrilla, A. 2015. Quantification of prebiotics in commercial infant formulas. Food Chemistry, 194, 6–11. https://doi.org/10.1016/j.foodchem.2015.07.127

Santibáñez, L., Fernández-Arrojo, L., Guerrero, C., Plou, F. J., Illanes, A. (2016). Removal of lactose in crude galacto-oligosaccharides by β-galactosidase from Kluyveromyces lactis. Journal of Molecular Catalysis B: Enzymatic, 133, 85–91. https://doi.org/10.1016/j.molcatb.2016.07.014

Schröder, S., Kröger, L., Mattes, R., Thiem, J. (2014). Transglycosylations employing recombinant α and β-galactosidases and novel donor substrates. Carbohydrate Research, 403, 157–166. https://doi.org/10.1016/j.carres.2014.05.005

Sheik, S. Asraf, Gunasekaran P. (2010). Current trends of β-galactosidase research and application. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. In A. Mendez-Villas (Ed), Formatex Microbiology Series 2(1). (pp. 880–890).

Shen, Q., Zhang, Y., Yang, R., Pan, S., Dong, J., Fan, Y., Han, L. (2016) Enhancement of isomerization activity and lactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Food Chemistry, 207, 60–67. https://doi.org/10.1016/j.foodchem.2016.02.067

Siso, M. I. G. (1996). The biotechnological utilization of cheese whey: a review. Bioresourse Technology, 57, 1–11. https://doi.org/10.1016/0960-8524(96)00036-3

Siso, M.I.G., Ramil, E., Cerdan, M.E. and Picos, M.A.F. (1996). Respirofermentative metabolism in Kluyveromyces lactis: ethanol production and the Crabtree effect. Enzyme Microbial Technology, 18, 585–595. https://doi.org/10.1016/0141-0229(95)00151-4

Song C., Chi, Z., Li, J., Wang, X. (2010). Beta-galactosidase production by the psychotolerant yeast Guehomyces pullulans 17-1 isolated from sea sediment in Antarctica and lactose hydrolysis. Bioprocess and Biosystems Engineering, 33, 1025–1031. https://doi.org/10.1007/s00449-010-0427-5

Srivastava, A., Mishra, S., Chand, S. (2015). Transgalactosylation of lactose for synthesis of galacto-oligosaccharides using Kluyveromyces marxianus NCIM 3551. New Biotechnology, 32(4), 412–418. https://doi.org/10.1016/j.nbt.2015.04.004

Strnad, S., Šauperl, O., Fras, L., Jazbec, A. (2007). Hitozan – vsestransko uporaben biopolimer. Tekstilec, 50(10–12), 243–261.

Terrell. S. L., Bernard, A., Bailey R. B. (1984). Ethanol from whey – continuous fermentation with a catabolite repression-resistant Saccharomyces cerevisiae mutant. Applied and Environmental Microbiology, 48, 577–80.

Urrutia, P., Rodrigues-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A., Wilson, L., Illanes, A., Plou, F. J. (2013). Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Journal of Agricultural and Food Chemistry, 61(5), 1081–1087. https://doi.org/10.1021/jf304354u

Vera, C., Guerrero, C., Illanes, A. (2011). Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations. Carbohydrate Research, 346(6), 745–752. https://doi.org/10.1016/j.carres.2011.01.030

Wahba, M. I. (2016). Treated calcium pectinate beads for the covalent immobilization of β-D-galactosidase. International Journal of Biological Macromolecules, 91, 877–886. https://doi.org/10.1016/j.ijbiomac.2016.06.044

Watson, A. L., Chiu, N. H. L. (2016). Flourometric cell-based assay for β-galactosidase activity in probiotic gram-positive bacterial cells – Lactobacillus helveticus. Journal of Microbiological Methods, 128, 58–60. https://doi.org/10.1016/j.mimet.2016.06.030

Yamanda, M., Chiba, S., Endo, Y., Isobe, K. (2017). New alkalophilic β-galactosidase with high activity in alkaline pH region from Teratosphaeria acidotherma AIU BGA-1. Journal of Bioscience and Bioengineering, 123(1), 15–19. https://doi.org/10.1016/j.jbiosc.2016.07.003

Yang, M., Silva, M. (1995). Novel products and new technologies for use of a familiar carbohydrate, milk lactose. Journal of Dairy Science, 78, 2541–2562. https://doi.org/10.3168/jds.S0022-0302(95)76884-9

Yuan, T. Z., Yang, P. L., Wang, Y. R., Meng, K., Luo, H. Y., Zhang, W. (2008). Heterologous expression of a gene encoding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius. Biotechnology Letters, 30, 343–348. https://doi.org/10.1007/s10529-007-9551-y

Zadow, J. G. (1984). Lactose: properties and uses. Journal of Dairy Science, 67, 2654–2679. https://doi.org/10.3168/jds.S0022-0302(84)81625-2

Zucca, P., Sanjust, E. (2014). Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules, 19, 14139–14194. https://doi.org/10.3390/molecules190914139

DOI: http://dx.doi.org/10.14720/aas.2017.110.1.1


  • There are currently no refbacks.

Copyright (c) 2017 Nika ŽIBRAT, Mihaela SKRT, Polona JAMNIK

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY-NC-ND 4.0 License.


ISSN 1581-9175     eISSN 1854-1941