Influence of altered temperatures on allelopatic properties of Amaranthus cruentus L.

Maria Elizabeth Cawood, Ingrid ALLEMANN, James ALLEMANN

Abstract


The relationships between allelochemicals and environmental factors are a key factor for the growth of plants under rotation. We investigated the allelopathic potential of Amaranthus cruentus L, grown under different temperature conditions in in vitro bioassays. An inhibitory effect on germination and growth of lettuce (Lactuca sativa L.), tomato (Solanum lycopersicum L.), pepper (Capsicum annuum L.) and cucumber (Cucumis sativus L.) was observed when seeds were subjected to the leaf litter of Amaranthus cruentus. Analysis from our study indicated that germination percentage was significantly affected by growth temperatures (T) of the amaranth (P ˂ 0.0001), litter concentration (C) (P ˂ 0.0001), vegetable type (V) (P ˂ 0.0001), the T × V interaction (P = 0.0041) and V × C interaction (P ˂ 0.0001). Pepper was the most sensitive with a decline in germination percentage at increasing concentrations (0, 1 and 5 mg ml-1) of litter. Hypocotyl and seminal root lengths were adversely influenced by the plant litter for all the temperature treatments, although effects were most severe when exposed to the leaf litter of the hot temperature treatment. The inhibition caused by the litter was dependent on growth temperature and concentration, while each vegetable species showed different levels of sensitivity.


Keywords


Amaranthus cruentus; allelopathy; vegetables; germination; hypocotyl; seminal root; crop rotation

Full Text:

PDF

References


Ayo, J.A. (2001). The effect of amaranth grain flour on the quality of bread. International Journal of Food Properties, 4(2), 341-351. doi:10.1081/JFP-100105198

Bavec, F., & Bavec, M. (2006). Grain amaranths. In: Organic Production and Use of Alternative Crops Pp 88-98. CRC Press/Taylor and Francis, Florida. doi:10.1201/9781420017427

Chon, S.U., Jennings, J.A., Nelson, C.J. (2006). Alfalfa (Medicago sativa L.) autotoxicity: Current status. Allelopathy Journal, 18, 57-80.

Dhellot, R.J., Matouba, E., Maloumbi, M.G., Nzikou, J.M., Safou, D.G., Linder, M. Parmentier, M. (2006). Extraction, chemical composition and nutritional characterization of vegetable oils: Case of Amaranthus hybridus (var 1 and 2) of Congo Brazzaville. African Journal of Biotechnology, 5, 1095-1102.

Einhellig, F.A., & Echrich, P.C. (1984). Interaction of temperature and ferulic acid stress on grain sorghum and soybean. Journal of Chemical Ecology, 10, 161-70. doi:10.1007/BF00987653

Fujii, Y., Parvez, S.S., Parvez, M.M., Ohmae, Y., Iida, O. (2003). Screening of 239 medical plant species for allelopathic activity using the sandwich method. Weed Biology and Management, 3, 233-241. doi:10.1046/j.1444-6162.2003.00111.x

Grobelnik, S.G., Turinek, M., Jakop, M., Bavec, M., Bavec, F. (2009). Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura, 6, 43-53.

Gronle, A., Heb, J., Böhm, H. (2015). Weed suppressive ability in sole and intercrops of pea and oat and it is interaction with ploughing and crop interference in organic farming. Organic Agriculture, 5, 39–51. doi:10.1007/s13165-014-0095-x

Grosz-Heilmann, R., Golz, J.T., Helgeson, D.L. (1990). Amaranth: A Food Crop From the Past for the Future (No. 121422). North Dakota State University, Department of Agribusiness and Applied Economics.

Guo, P., & Al-Khatib, K. (2003). Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. plameri), and common waterhemp (A. rudis). Weed Science, 51, 869-875. doi:10.1614/P2002-127

Harvey, J.A., & Malcicka, M. (2015). Climate Change, Range Shifts and Multitrophic Interactions. In: Biodiversity in Ecosystems- Linking Structure and Function Pp 85-109. Publisher: InTechOpen.

IPCC (Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change). (2007). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Maqbool, N., Wahid, A., Farooq, M., Cheema, Z.A., Siddique, K.H.M. (2013). Allelopathy and Abiotic Stress Interaction in Crop Plants. In: Allelopathy: Current Trends and Future Applications Pp 451-468. Springer-Verlag, Germany. doi:10.1007/978-3-642-30595-5_19

Mensah, J.K., Okoli, R.I., Ohaju-Obodo, J.O., Eifediyi, K. (2008). Phytochemical, nutritional and medical properties of some leafy vegetables consumed by Edo people of Nigeria. African Journal of Biotechnology, 7(14), 2304-2309.

Mlakar, S.G., Jakop, M., Bavec, M., Bavec, F. (2012). Allelopathic effects of Amaranthus retroflexus and Amaranthus cruentus extracts on germination of garden cress. African Journal of Agricultural Research, 7(10), 1492-1497.

Olaniyi, J. O. (2007). Evaluation of yield and quality performance of grain amaranth varieties in the Southwestern Nigeria. Research Journal of Agriculture, 1(2), 42-45.

Olaniyi, J. O., Adelasoye, K. A., Jegede, C. O. (2008). Influence of nitrogen fertilizer on the growth, yield and quality of grain amaranth varieties. World Journal of Agricultural Science, 4(4), 506-513.

Olumayokun, A., Olajid, B.R., Ogunleya, T., Erinle, O. (2004). Anti-inflammatory properties of Amaranthus spinosus. Pharmaceutical Biology, 521-525.

Qasem, J.R. (2010). Allelopathy importance, field application and potential role in pest management: a review. Journal of Agricultural Sciences and Technology, USA 4 (6), 104-120.

Rawat, L.S., Maikhuri, R.K., Bahuguna, Y.M., Jha, N.K., Phondani, P.C. (2017). Sunflower Allelopathy for Weed Control in Agriculture Systems. Journal of Crop Science and Biotechnology, 20(1), 45-60. doi:10.1007/s12892-016-0093-0

Saunders, R., & Becker, R. (1984). Amaranthus: a potential food and feed resource. Advances in Cereal Science and Technology, 6, 357-396.

Stamp, N.E., & Osier, T.L. (1997). Combined effects of night-time temperature and allelochemicals on performance of a solanaceae specialist herbivore. Ecoscience, 4, 286-95. doi:10.1080/11956860.1997.11682407

Steckel, J. (2004). The dioecious Amaranth spp: Here to stay. Weed Technology, 21, 567-570. doi:10.1614/WT-06-045.1

Steel, R. G. D., & Torrie, J. H. (1980). Principles and Procedures of Statistics Pp 633. Second Edition, New York: McGraw-Hill.

Steinsiek, J.W., Oliver, L.R., Collins, F.C. (1982). Allelopathic Potential of Wheat (Triticum aestivum) Straw on Selected Weed Species. Weed Science, 30, 495-497.

Wagner, D. (1996). Scenarios of extreme temperature events. Climatic Change, 33, 385-407. doi:10.1007/BF00142585

Wang, C., Liu, J., Zhou, J. (2017). N deposition affects allelopathic potential of Amaranthus retroflexus with different distribution regions. Annals of the Brazilian Academy of Sciences, 89(2), 919-926. doi:10.1590/0001-3765201720160513

Yaacob, J.S., Taha, R.M., Mat Nor, N.A., Aziz, N. (2004). Pigment analysis and tissue culture of Amaranthus cruentus L. In: De Neve, S., Boehme, M., Everaarts, A., Neeteson (Eds.), First International Symposium on Sustainable Vegetable Production in South East Asia, Acta horticulturae, 958, ISHS 2012.




DOI: http://dx.doi.org/10.14720/aas.2017.109.2.29

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Maria Elizabeth Cawood

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941