Effects of seaweed extract on the growth, yield and quality of cherry tomato under different growth conditions



An experiment was carried out to determine the effect of foliar application of seaweed extract (0.2 %) on the growth, yield and quality of cherry tomato under stress and non-stress conditions. The greenhouse experiment was set up in a randomized block design with four treatments in three replications. Treatments were as follows: V1 - seedlings treated by seaweed extract and subjected to drought; V2 - seedlings treated by seaweed extract and regularly watered; V3 - non-treated seedlings subjected to drought; V4 - non-treated seedlings regularly watered. Cherry tomato seedlings treated by seaweed extract had a lower content of proline and higher leaf water potential compared to non-treated seedlings under stress conditions, indicating that application of this fertilizer contributes to better adaptation of cherry tomato seedlings to stress. Treatment with seaweed extract also positively influenced the yield and quality of cherry tomato (total soluble solids, vitamin C, lycopene) under both standard and drought stress conditions as compared to untreated plants in same conditions. Positive effects of seaweed extract on growth and quality of cherry tomato are result of its specific composition, as well as ability of cherry tomato plants to utilize bioactive substances in seaweed extracts for its growth and development.


cherry tomato; seaweed extract; osmotic adjustment; photosynthesis; antioxidants; growth conditions

Full Text:



Aldana, F, García, P. N., Fischer, G. (2014). Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(149), 393-400. doi:10.18257/raccefyn.114

Ali, N., & Anjum, M. M. (2016). Drought Stress: Major cause of low yield and productivity. Austin Environmental Sciences, 1(3), 1012.

Ali, N., Farrell, A., Ramsubhag, A., & Jayaraman, J. (2016). The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of applied phycology, 28(2), 1353-1362. doi:10.1007/s10811-015-0608-3

Anjum, S. A., Xie, X., Wang, L., Saleem, M. F., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032.

AOAC, (2000). Acidity (Titratable) of fruit products (Method No. 942.15). Official Methods of Analysis, 17th Ed. AOAC International, Washington.

AOAC, (2006). Vitamin C in juices and vitamin preparations (Method No. 967.21). Official Methods of Analysis, 18th Ed. AOAC International, Arlington.

Appel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399. doi:10.1146/annurev.arplant.55.031903.141701

Arioli, T., Mattner, S. W., Winberg. P. C. (2015). Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of Applied Phycology, 27(5), 2007-2015. doi:10.1007/s10811-015-0574-9

Atkinson, N. J., Dew, T. P., Orfila, C., Urwin, P. E. (2011). Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 59(17), 9673-9682. doi:10.1021/jf202081t

Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523-3543. doi:10.1093/jxb/ers100

Atmani, D., Chaher, N., Berboucha, M., Ayouni, K., Lounis, H., Boudaoud, H., Debbache, N., Atmani, D. (2009). Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chemistry, 112(2), 303-309. doi:10.1016/j.foodchem.2008.05.077

Basu, S., Roychoudhury, A., Saha, P. P., Sengupta, D. N. (2010). Differential antioxidative responses of Indica rice cultivars to drought stress. Plant Growth Regulation, 60, 51-59. doi:10.1007/s10725-009-9418-4

Bates, L. S., Waldren, R. P., Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/BF00018060

Benzie, I. F., & Strain, J. J. (1996). Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239, 70-76. doi:10.1006/abio.1996.0292

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371-393. doi:10.1007/s10811-010-9560-4

Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11, 163. doi:10.1186/1471-2229-11-163

Davis, A. R., Fish, W. W., Perkins-Veazie, P. (2003). A rapid spectrophotometric method for analyzing lycopene content in tomato and tomato products. Postharvest Biology and Technology, 28(3), 425-430. doi:10.1016/S0925-5214(02)00203-X

Dobromilska, R., Mikiciuk, M., Gubarewicz, K. (2008). Evaluation of cherry tomato yielding and fruit mineral composition after using of Bio algeen S-90 preparation. Journal of Elementology, 13(4), 491-499.

Escarpa, A., & Gonzalez, M. C. (2000). Optimization strategy and validation of one chromatographic method as approach to determine the phenolic compounds from different sources. Journal of Chromatography A, 897, 161-70. doi:10.1016/S0021-9673(00)00817-7

Galmés, J., Ochogavía, J. M., Gago, J., Roldán, E. J., Cifre, J., Conesa, M. A. (2013). Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell & Environment, 36(5), 920-935.

Ghorbanli, M., Gafarabad, M., Amirkian, T., Mamaghani, B. A. (2013). Investigation on proline, total protein, chlorophyll ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology, 3(2), 651-658.

Giannakoula, A. E., & Ilias, I. F. (2013). The effect of water stress and salinity on growth and physiology of tomato. Archives of Biological Science Belgrade, 65(2), 611-620.

González, A., Castro, J., Vera, J., Moenne, A. (2013). Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. Journal of Plant Growth Regulation, 32(2), 443-448. doi:10.1007/s00344-012-9309-1

Ha, C. V., Leyva-González, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y., ... Tran, L. S. P. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences, 111(2), 851-856. doi:10.1073/pnas.1322135111

Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., Ahmad, A. (2012). Role of the proline under changing environments. Plant Signaling & Behavior, 7(11), 1456-1466. doi:10.4161/psb.21949

ISO, (2003). Fruit and vegetable productsDetermination of soluble solids, Refractometric method. ISO 2173, International Organization for Standardization, Geneva, Switzerland.

Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., Vam, R. P. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11, 100-105.

Jureková, Z., Németh-Molnár, K., Paganová, V. (2011). Physiological responses of six tomato (Lycopersicon esculentum Mill.) cultivars to water stress. Journal of Horticulture and Forestry, 3(10), 294-300.

Karabudak, T., Bor, M., Özdemir, F., Türkan. I. (2014). Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Molecular Biology Reports, 41(3), 1401-1410. doi:10.1007/s11033-013-2984-6

Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386-399. doi:10.1007/s00344-009-9103-x

Knipling, E. B. (1967). Measurement of leaf water potential by the dye method. Ecology, 48(6), 1038-1041.

Kubota, C., Thomson, C., Wu, M., Javanmardi, J. (2006). Controlled environments for production of value-added food crops with high phytochemical concentrations: Lycopene in tomato as an example. HortScience, 41(3), 522-525.

Li, Y., & Mattson, N. S. (2015). Effect of seaweed extract application rate and method on post-production life of petunia and tomato transplants. HortTechnology, 25(4), 505-510.

Lichtenthaler, H. K., & Wellburn, W. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

Marks, S. C., Mullen, W., Croizer, A. (2007). Flavonoid and chlorogenic acid profiles of English cider apples. Journal of the Science of Food and Agriculture, 87, 719-728. doi:10.1002/jsfa.2778

Mikiciuk, M., & Dobromilska, R. (2014). Assessment of yield and physiological indices of small-sized tomato cv.‘Bianka F1’under the influence of biostimulators of marine algae origin. Acta Scientiarum Polonorum-Hortorum Cultus, 13(1), 31-41.

Murshed, R., Lopez-Lauri, F, Sallanon, H. (2013). Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). Physiology and Molecular Biology of Plants, 19(3), 363-378. doi:10.1007/s12298-013-0173-7

Neily, W., Shishkov, L., Nickerson, S., Titus, D., Norrie, J. (2010). Commercial extracts from the brown seaweed Ascophyllum nodosum (Acadian®) improves early establishment and helps resist water stress in vegetable and flower seedlings. HortScience 45, S234.

Nuruddin, M. M., Madramootoo, C. A., Dodds, G. T. (2003). Effects of water stress at different growth stages on greenhouse tomato yield and quality. HortScience, 38(7), 1389-1393.

Okunlola, G. O., Adelusi, A. A., Olowolaju, E. D., Oseni, O. M., Akingboye, G. L. (2015). Effect of water stress on the growth and some yield parameters of Solanum lycopersicum L. International Journal of Biological and Chemical Sciences, 9(4), 1755-1761. doi:10.4314/ijbcs.v9i4.2

Ough, C. S., & Amerine, M. A. (1988). Phenolic compounds. In Methods for analysis of must and wines (pp. 50-70). New York: Wiley.

Pandey, S. K., & Singh, H. 2011. A simple, cost-effective method for leaf area estimation. Journal of Botany, 658240, 6. doi:10.1155/2011/658240

Sanchez-Rodriguez, E., Moreno, D. A., Ferreres, F., Rubio-Wilhelmi, M., Ruiz, J. M. (2011). Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry, 72(8), 723-729. doi:10.1016/j.phytochem.2011.02.011

Spann, T. M, & Little, H. A. (2011). Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’ sweet orange nursery trees. HortScience, 46(4), 577-582.

Tilman, D, Cassman, K. G., Matson, P. A., Naylor, R., Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677. doi:10.1038/nature01014

Wettstein, D. (1957). Chlorophyll letale und der submikroskopische Formwechsel der Plastiden. Experimental Cell Research, 12(3), 427-434. https://doi:10.1016/0014-4827(57)90165-9

Yuan, X. K., Yang, Z. Q., Li, Y. X, Liu, Q, Han, W. (2016). Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 54, 28-39. doi:10.1007/s11099-015-0122-5

Zhang, X., & Ervin, E. H. (2004). Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Science, 44(5), 1737-1745. doi:10.2135/cropsci2004.1737

Zhishen, J, Mengcheng, T, Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/S0308-8146(98)00102-2

DOI: http://dx.doi.org/10.14720/aas.2018.111.2.07


  • There are currently no refbacks.

Copyright (c) 2018 Senad Murtic, Rodoljub Oljaca, Mirela Smajic Murtic, Amila Vranac, Ivana Koleska, Lutvija Karic

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941