Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint



Taking account of nano-compounds and biofortification, this research was conducted to evaluate peppermint (Mentha x piperita L.) responses to nano-selenium (nSe; 0, 2, and 20 mg l-1) and/or nitric oxide (NO; 0 and 8 mg l-1). Significant increases in leaf length, and area, and shoot fresh mass were enhanced by the low level of nSe and/or NO, contrasted with the high dose. The inhibitory effects of the high dose of nSe on the growth-related characteristics were significantly mitigated by NO. The adverse impact of nSe20 on chlorophyll concentration was alleviated by NO. The individual and combined treatments of nSe2 led to the significant inductions in the activities of nitrate reductase and peroxidase, whereas nSe20 inhibited. The proline contents in the nSe and/or NO-treated plants were higher than in the control. The nSe and/or NO provoked stimulation in activities of phenylalanine ammonia lyase enzyme. The foliar applications of nSe and/or NO triggered the accumulations of soluble phenols. Interestingly, the toxicity of nSe at the high dose led to the severe cell destruction in the cortex layer of the basal stem, which was partially alleviated by NO. The simultaneous applications of these supplements may consider as an alternative strategy for fortifying and improving plant protection, regarding sustainable agriculture.


biofortification; elicitor; metal-based nanoparticle; Mentha x piperita; nitrate reductase; proline; selenium

Full Text:



Ardebili, N.O., Saadatmand, S., Niknam, V., & Khavari-Nejad, R. (2014). The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiologiae Plantarum, 36, 3199-205. doi:10.1007/s11738-014-1686-6

Ardebili, Z. O., Ardebili, N., O., Jalili, S., & Safiallah, S. (2015). The modified qualities of basil plants by selenium and/or ascorbic acid. Turkish Journal of Botany, 39, 401-407. doi:10.3906/bot-1404-20

Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1. doi:10.1104/pp.24.1.1

Asgari-Targhi, G., Iranbakhsh, A., & Ardebili, Z.O., (2018). Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiology and Biochemistry, 127, 393-402. doi:10.1016/j.plaphy.2018.04.013

Aslam, M., Harbit, K.B., & Huffaker, R. (1990). Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings. Plant cell and Environment, 13,773-82. doi:10.1111/j.1365-3040.1990.tb01093.x

Bates, L., Waldren, R., and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205-207. doi:10.1007/BF00018060

Beaudoin-Eagan, L.D., & Thorpe, T. (1985). Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology 78, 438-441. doi:10.1104/pp.78.3.438

Beligni, M.V., Fath, A., Bethke, P.C., Lamattina, L. and Jones, R.L. (2002). Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant physiology, 129(4), 1642-1650. doi:10.1104/pp.002337

Bouchez, O., Huard, C., Lorrain, S., Roby, D. and Balagué, C. (2007). Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. Plant physiology, 145(2), 465-477. doi:10.1104/pp.107.106302

Brodersen, P., Malinovsky, F.G., Hématy, K., Newman, M.A. and Mundy, J. (2005). The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology, 138(2), 1037-1045. doi:10.1104/pp.105.059303

Çoban, Ö., & Baydar, N. G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Industrial Crops and Products, 86, 251-258. doi:10.1016/j.indcrop.2016.03.049

Courtois, C., Besson, A., Dahan, J., Bourque, S., Dobrowolska, G., Pugin, A., & Wendehenne, D. (2008). Nitric oxide signaling in plants: interplays with Ca2+ and protein kinases. Journal of Experimental Botany, 59, 155-63. doi:10.1093/jxb/erm197

El-Ramady, H., Abdalla, N., Taha, H.S., Alshaal, T., El-Henawy, A, Salah, E.D., Shams, M.S., Youssef, S.M., Shalaby, T., Bayoumi, Y., & Elhawat, N. (2016). Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 14, 23-47. doi:10.1007/s10311-015-0535-1

Fatma, M., Masood, A., Per, T.S., & Khan, N.A. (2016). Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Frontiers in Plant Science ,7. doi:10.3389/fpls.2016.00521

Feng, R., Wei, C., & Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87, 58–68. doi:10.1016/j.envexpbot.2012.09.002

Germ, M., Kreft, I., Stibilj, V., & Urbanc-Berčič, O. (2007). Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiology and Biochemistry, 45(2), 162-167. doi:10.1016/j.plaphy.2007.01.009

Golubkina, N.A., Kosheleva, O.V., Krivenkov, L. V., Dobrutskaya, H. G., Nadezhkin, S., & Caruso, G. (2017). Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Scientia Horticulturae, 225, 350-358. doi:10.1016/j.scienta.2017.07.001

Gunawardena, A., Pearce, D.M., Jackson, M.B., Hawes, C.R., & Evans, D.E. (2001). Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta, 212, 205-214. doi:10.1007/s004250000381

Gupta, K.J., Fernie, A.R., Kaiser, W.M., & Van Dongen, J.T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16,160-8. doi:10.1016/j.tplants.2010.11.007

Hajiboland, R., & Sadeghzade, N. (2014). Effect of selenium on CO2 and NO3− assimilation under low and adequate nitrogen supply in wheat (Triticum aestivum L.). Photosynthetica, 52, 501–510. doi:10.1007/s11099-014-0058-1

Hemeda, H. M., & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184-185. doi:10.1111/j.1365-2621.1990.tb06048.x

Husen, A., & Siddiqi, K.S. (2014). Plants and microbes assisted selenium nanoparticles: characterization and application. Journal of Nanobiotechnology, 12, 28. doi:10.1186/s12951-014-0028-6

Ježek, P., Hlušek, J., Lošák, T., Jůzl, M., Elzner, P., Kráčmar, S., Buňka. F., & Martensson, A. (2011). Effect of foliar application of selenium on the content of selected amino acids in potato tubers (Solanum tuberosum L.). Plant Soil and Environment, 57, 315-320. doi:10.17221/57/2011-PSE

Kaur, S., & Nayyar, H. (2015). Selenium fertilization to salt-stressed mungbean (Vigna radiata (L.) Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Scientia Horticulturae, 197, 304-17. doi:10.1016/j.scienta.2015.09.048

Lehotai, N., Petô, A., Erdei, L., & Kolbert, Z. (2011). The effect of selenium (Se) on development and nitric oxide levels in Arabidopsis thaliana seedlings. Acta Biologica Szegediensis, 55,105-7.

Liu, X., Yang, Y., Deng, X., Li, M., Zhang, W., & Zhao, Z. (2017). Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate. Environmental and Experimental Botany, 135, 13-20. doi:10.1016/j.envexpbot.2016.12.005

Munshi, C.B., & Mindy, N.I. (1992). Glycoalkaloid and nitrate content of potatoes as affected by method of selenium application. Biol. Trace Element Research, 33, 21–127. doi:10.1007/BF02784000

Mur, L.A., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Harren, F.J., Hebelstrup, K.H., & Gupta, K.J. (2013). Nitric oxide in plants: an assessment of the current state of knowledge. AOB plants, 5. doi:10.1093/aobpla/pls052

Sanz, L., Fernández-Marcos, M., Modrego, A., Lewis, D.R., Muday, G.K., Pollmann, S., Dueñas, M., Santos-Buelga, C., & Lorenzo, O. (2014). Nitric oxide plays a role in stem cell niche homeostasis through its interaction with auxin. Plant Physiology, 166, 1972-84. doi:10.1104/pp.114.247445

Sym, G.J. (1984). Optimisation of the in‐vivo assay conditions for nitrate reductase in barley (Hordeum vulgare L. cv. Igri). Journal of the Science of Food and Agriculture, 35, 725-30. doi:10.1002/jsfa.2740350703

Tamaoki, M., Freeman, J.L., Marquès, L., & Pilon-Smits, E.A.H. (2008). New insights into the roles of ethylene and jasmonic acid in the acquisition of selenium resistance in plants. Plant Signaling and Behavior, 3, 865–867. doi:10.4161/psb.3.10.6050

Tripathi, D.K., Mishra, R.K., Singh, S., Singh, S., Vishwakarma, K., Sharma, S., Singh, V.P., Singh, P.K., Prasad, S.M., Dubey, N.K., & Pandey, A. (2017). Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle. Frontiers in plant science, 8. doi:10.3389/fpls.2017.00001

Velikova, V., Fares, S., & F. Loreto. (2008). Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. Plant, Cell and Environment, 31, 1882-94. doi:10.1111/j.1365-3040.2008.01893.x

Wang, Y., Loake, G.J. & Chu, C. (2013). Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Frontiers in Plant Science, 4, 314. doi:10.3389/fpls.2013.00314

White, P.J., and Broadley, M. (2009). Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182, 49–84. doi:10.1111/j.1469-8137.2008.02738.x

Zhao, H., Jin, Q., Wang, Y., Chu, L., Li, X., & Xu, Y. (2016). Effects of nitric oxide on alleviating cadmium stress in Typha angustifolia. Plant Growth Regulation, 78, 243–251. doi:10.1007/s10725-015-0089-z

DOI: http://dx.doi.org/10.14720/aas.2018.111.2.11


  • There are currently no refbacks.

Copyright (c) 2018 Hossein Nazerieh, zahra oraghi ardebili, alireza iranbakhsh

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941