Graphic analysis of yield stability in new improved lentil (Lens culinaris Medik.) genotypes using nonparametric statistics



Yield stability is an interesting feature of today’s lentil breeding programs, due to the high annual variation in mean yield, particularly in the arid and semi-arid areas. The genetic effects including genetic main and genotype × environment (GE) interaction effects for grain yield of eighteen lentil (Lens culinaris Medik.) genotypes were studied with fourteen nonparametric stability statistics. Results of five distinct nonparametric tests of GE interaction and combined ANOVA showed there were both additive and crossover interaction types and genotypes varied significantly for grain yield. According to most of the nonparametric stability statistics, genotypes G5, G6, G8 and G18 were the most stable genotypes. Considering mean yield versus stability values via their plotting, indicates that genotypes G2, G11 and G14 following to G5, G16 and G18 were the most favorable genotypes. None of the nonparametric stability statistics were correlated with mean yield and so had static concept of stability. Our results confirmed that rankings of genotypes within environments and using mean yield information permit ease of interpretation of nonparametric results. Finally genotypes G2 (FLIP 92-12L), G11 (Gachsaran) and G14 (ILL 6206) were found to be the most stable and high mean yielding genotype and thus recommended for commercial release. Such an outcome could be used to delineate predictive, more rigorous recommendation strategies as well as to help define stability concepts for lentil and other crops.


lens culinaris; lentils; statistical methods; methods; genotypes; environment; crop yield; arid zones; semiarid zones

Full Text:



Akcura M., Kaya Y. (2008). Nonparametric stability methods for interpreting genotype by environment interaction of bread wheat genotypes (Triticum aestivum L.). Genetics and Molecular Biology 31: 906-913, DOI: 10.1590/S1415- 47572008005000004.

Annicchiarico P. (2002). Defining adaptation strategies and yield stability targets in breeding programmes. In: Quantitative genetics, genomics, and plant breeding. M.S. Kang (ed.). Published by CABI Wallingford, UK: 365–383.

Azzalini A., Cox D.R. (1984) . Two new tests associated with analysis of variance. Journal of Royal Statistics Society 46: 335–343.

Becker H.C., Leon J. (1988). Stability analysis in plant breeding. Plant Breeding 101: 1–23, DOI: 10.1111/j.1439-0523.1988.tb00261.x.

Bredenkamp J. (1974). Non-parametriche prufung von wechsewirkungen. Psychologische Beiträge 16: 398–416.

Cooper M., Byth D.E. (1996). Understanding plant adaptation to achieve systematic applied crop improvement - A fundamental challenge. In: Plant adaptation and crop improvem ent. M. Cooper G.L. Hammer (ed.). Published by CABI Wallingford, UK: 5–23.

de Kroon J., van der Laan P. (1981). Distribution-free test procedures in two-way layouts: A concept of rank-interaction. Statistica Neerlandica 35: 189– 213, DOI: 10.1111/j.1467-9574.1981.tb00730.x.

DeLacy I.H., Basford K.E., Cooper M., Bull J.K., McLaren C.G. (1996). Analysis of multi- environment data - An historical perspective. In: Plant adaptation and crop im provement. M. Cooper G.L. Hammer (ed.). Published by CABI Wallingford, UK: 39–124.

Ebadi-Segherloo A., Sabaghpour S.H., Dehghani H., Kamrani M. (2008). Non-pa rametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica 2: 221–229, DOI: 10.1007/s10681-007-9552-x.

Eberhart S.A., Russell W.A. (1966). Stability parameters for comparing varieties. Crop Science 6: 36–40, DOI: 10.2135/cropsci1966.0011183X000600010011x.

FAOSTAT (2010). Data stat year 2010. Food Agriculture Organization, ( verified 2 August. 2012. Rome, Italy.

Flores F., Moreno M.T., Cubero J.I. (1998). A comparison of univariate and multivariate methods to analyze environments. Field Crops Research 56: 271–286, DOI: 10.1016/S0378-4290(97)00095-6.

Fox P.N., Skovmand B., Thompson B.K., Braun H.J., Cormier R. (1990). Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57–64, DOI: 10.1007/BF00040364.

Gauch H.G., Piepho H.P., Annicchiaricoc P. (2008). Statistical analysis of yield trials by AMMI and GGE. Further considerations. Crop Science 48: 866–889, DOI: 10.2135/cropsci2007.09.0513.

Hildebrand H. (1980) Asymptotosch verteilungsfreie rangtests in linearen modellen. Medizinische Informatik und Statistik 17: 344–349, DOI: 10.1007/978-3-642-81405-1_34.

Huehn M. (1979). Beitrage zur erfassung der phanotypischen stabilitat. EDV in Medizin und Biologie 10: 112–117. Huehn M. (1990a). Non-parametric measures of phenotypic stability: Part 1. Theory. Euphytica 47: 189–194.

Huehn M. (1990b). Non-parametric measures of phenotypic stability: Part 2. Application. Euphytica 47: 195–201.

Huehn M. (1996). Non-parametric analysis of genotype × environment interactions by ranks. In: Genotype by environment interaction. M.S. Kang H.G. Gauch (ed.). Published by CRC Press, Boca Raton, FL: 213–228, DOI: 10.1201/9781420049374.ch9.

Huehn M., Leon J. (1995). Non-parametric analysis of cultivar performance trials: Experimental results and comparison of different procedures based on ranks. Agronomy Journal 87: 627–632, DOI: 10.2134/agronj1995.00021962008700040004x.

Hussein M.A., Bjornstad A., Aastveit A.H. (2000). SASG×ESTAB: A SAS program for computing genotype 3 environment stability statistics. Agronomy Journal 92: 454–459, DOI: 10.2134/agronj2000.923454x.

Kang M.S. (1988). A rank–sum method for selecting high-yielding, stable corn genotypes. Cereal Research Commutations 16: 113–115.

Kang M.S. (1998). Using genotype-by-environment interaction for crop cultivar development. Advanced Agronomy 62: 199–252, DOI: 10.1016/S0065-2113(08)60569-6.

Kang M.S., Pham H.N. (1991). Simultaneous selection for high yielding and stable crop genotypes. Agronomy Journal 83: 161–165, DOI: 10.2134/agronj1991.00021962008300010037x.

Karimizadeh R., Mohammadi M., Sabaghnia N., Shefazadeh M.K. (2 012). Using Huehn’s Nonparametric stability statistics to investigate genotype × environment interaction. Notulae Botanicae Horti Agrobotani ci Cluj-Napoca 40: 293- 301.

Kaya Y., Taner S. (2002). Estimating genotypes ranks by nonparametric stability analysis in bread wheat (Triticum aestivum L.). Journal of Central European Agriculture 4: 47–53.

Ketata H., Yan S.K., Nachit M. (1989). Relative consistency performance across environments. Int. Symposium on Physiology and Breeding of Winter Cereals for stressed Mediterranean Environments. Montpellier, July 3–6, 1989.

Kubinger K.D. (1986). A note on non-parametric tests for the interaction on two-way layouts. Biometrical Journal 28: 67–72, DOI: 10.1002/bimj.4710280113.

Lu H.Y. (1995) PC-SAS program for Estimation Huehn’s nonparametric stability statistics. Agronomy Journal 87: 888–891, DOI: 10.2134/agronj1995.00021962008700050018x.

Mohebodini M., Dehghani H., Sabaghpour S.H. (2006). Stability of performance in lentil (Lens culinaris Medik.) genotypes in Iran. Euphytica 149: 343– 352, DOI: 10.1007/s10681-006-9086-7.

Mut Z, N. Aydin, H. O. Bayramo ğ lu, H. Ozcan. 2009. Interpreting genotype × environment interaction in bread wheat (Triticum aestivum L.) genotypes using nonparametric measures . Turkish Journal of Agriculture and Forestry 33: 127-137.

Nassar R., Huehn M. (1987). Studies on estimation of phenotypic stability: Tests of significance for non- parametric measures of phenotypic stability. Biometrics 43: 45–53, DOI: 10.2307/2531947.

Raiger H.L., Prabhakaran V.T. (2000). A statistical comparison between non-parametric and parametric stability measures. Indian Journal of Genetics 60: 417– 432.

Rose L.W., Das M.K., Taliaferro C.M. (2008). A comparison of dry matter yield stability assessment methods for small numbers of genotypes of bermudagrass. Euphytica: 164 19-25, DOI: 10.1007/s10681-007-9620-2.

Sabaghnia N., Dehghani H., Sbaghpour S.H. (2006). Nonparametric methods for interpreting genotype × environment interaction of lentil genotypes. Crop Science 46: 1100–1106, DOI: 10.2135/cropsci2005.06-0122.

Sabaghnia N., Karimizadeh R., Mohammadi M. (2012). The use of corrected and uncorrected nonparametric stability measurements in durum wheat multi- environmental trials. Spanish Journal of Agricultural Research 2012 10(3), 722-730, DOI: 10.5424/sjar/2012103-384-11.

Sabaghnia N., Sbaghpour S.H., Dehghani H. (2008). The use of an AMMI model and its parameters to analyse yield stability in multi-environment trials. Journal of Agriculture Science (Cambridge) 146: 571–581.

Scapim C.A., Pacheco C.A.P., Amara A.T., Vieira R.A., Pinto R.J.B., Conrado T.V. (2010). Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica 174: 209–218, DOI: 10.1007/s10681-010-0118-y.

Shukla G.K. (1972). Some aspects of partitioning genotype-environmental components of variability. Heredity 28: 237–245, DOI: 10.1038/hdy.1972.87.

Thennarasu K. (1995). On certain non-parametric procedures for studying genotype × environment interactions and yield st ability. Ph.D. thesis. P.J. School, IARI, New Delhi, India.

Truberg B., Huehn M. (2000). Contribution to the analysis of genotype by environment interactions: Comparison of different parametric and non- parametric tests for interactions with emphasis on crossover interactions. Journal of Agronomy and Crop Science 185: 267–274, DOI: 10.1046/j.1439- 037x.2000.00437.x.

Zobel R.W., Wright M.J., Gauch H.G. (1988). Statistical analysis of a yield trial. Agronomy Journal 80: 388–393, DOI: 10.2134/agronj1988.00021962008000030002x.



  • There are currently no refbacks.

Copyright (c) 2014 Acta agriculturae Slovenica


Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.


eISSN 1854-1941