Influence of soil cultivation depth on energy consumption and on preparation of seed bed using rotary harrow before maize planting

Rajko BERNIK, Filip VUČAJNK

Abstract


In 2012 on the Laboratory Field of Biotechnical Faculty the field trial was carried out, trying to establish the influence of the soil cultivation on the fuel consumption, on the physical-mechanical soil properties of the seed bed and at the end on the field emergence of maize. A rotary harrow was used for soil preparation just before maize planting and it was adjusted to the soil cultivation depths of 5 cm, 10 cm and 15 cm. The trial was designed as random blocks. A tractor with stepless transmission and nominal power of 73 kW and a rotary harrow with working width of 2.5 m were used. The speed of soil cultivation was 5.0 km h-1 on the tractometer and the engine rotational frequency was 1900 rpm. The fuel consumption per hour, the fuel consumption per hectare and the energy consumption per hectare increased by increasing the adjusted soil depth cultivation from 5 cm to 15 cm using the rotary harrow. At the adjusted soil cultivation depth of 10 and 15 cm cm, the vertical soil resistance at depths between 8 and 13 cm was lower than at the adjusted soil depths of 5 cm. No significant differences were found regarding the soil physical properties in the seed bed and the field emergence of maize among three adjusted soil cultivation depths. The soil cultivation depth of 10 cm proved to be the most appropriate in view of the fuel consumption, energy consumption as well as the physical-mechanical soil properties of the seed bed and plant emergence.

Keywords


soil cultivation; rotary harrow; energy consumption; physical-mechanical soil properties; maize

References


Barik K., Aksakal E. L., Islam K. R., Sari S., Angin I. (2014). Spatial veriability in soil compaction properites associated with field traffic operations. Catena, 120, 122-133. doi:10.1016/j.catena.2014.04.013

Bernik R. (2005). Tehnika v kmetijstvu: obdelava tal, setev, gnojenje. Predavanja za študente agronomije in zootehnike. Biotehniška fakulteta, Oddelek za agronomijo: 138 str.

Botta G.P., Jorajuria D., Balbuena R., Rosatto H. (2004). Mechanical and cropping behavior of direct drilled soil under different traffic intensities: effect on soybean (Glycine max L.) yields. Soil & Tillage Research, 78, 53-58. doi:10.1016/j.still.2004.01.004

Brehm D. (2010). Amazone KE 3000 Super. DLG-Prüfbericht 5897 F. Groß-Umstadt, DLG e.V. Teestzentrum Tachnik und Betriebsmittel: 6 str. http://www.dlg-test.de/tests/5897F.pdf (19. 3. 2018)

Carrara M., Castrignanò A., Comparetti A., Febo P., Orlando S. (2007). Mapping of penetrometer resistance in relation to tractor traffic using multivariate geostatistics. Geoderma, 142, 294-307. doi:10.1016/j.geoderma.2007.08.020

Crop Focus. (2015). Planting depth and spacing. https://growersunited.files.wordpress.com/2014/03/c_depth-considerations.pdf (22.1.2018)

Deperon Júnior A. M., Nagahama H. J., Olszevski N., Cortez J. W., De Souza E. B. (2016). Tillage machinery and compaction level influence on soil physical properties and corn agronomic aspects. Journal of the Brazilian Association of Agricultural Engineeing, 36, 367-376.

Dyer J.A., Desjardins R. L. (2003). The impact of farm machinery management on the greenhouse gas emission from Canading agriculture. Journal of Sustainable Agriculture, 22(3), 59-47. doi:10.1300/J064v22n03_07

Filipović D., Košutić S., Gospodarić Z., Zimmer R., Banaj D. (2006). The possibilities of fuel savings and the reduction of CO2 emissions in the soil tillage in Croatia. Agriculture, Ecosysistems and Environment, 115, 290-294. doi:10.1016/j.agee.2005.12.013

Koch H. J., Heuer H., Tomanová O., Märländer B. (2008). Cumulative effect of annually repeated passes of heavy agricultural two tillage systems. Soil and Tillage Research, 101, 69-77. doi:10.1016/j.still.2008.07.008

KTBL (2012). Betriebsplanung Landwirtschaft, Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt, 824 str.

Kuhwald M., Blaschek M., Minkler R., Nazemtseva Y., Schwanebeck M., Winter J., Duttmann R. (2016). Spatial analysis of long-term effects of different tillage practices based on penetration resistance. Soil Use and Managment, 32, 240-249. doi:10.1111/sum.12254

Leghari N., Mughal A. Q., Leghari K. Q., Farhad W., Mohkum Hammad M. and H. (2016). Efect of various tillage practices on soil properties and maize growth. Pakistan Journal Botany, 48(3), 1173-1182.

Lütke Eintrup N., Schwarz F.J., Heilmann H. (2013). Handbuch Mais. Frankurt am Main, DLG Verlag: 442 str.

Meteo (2018). http://meteo.arso.gov.si/met/sl/app/webmet/#webmet==8Sdwx2bhR2cv0WZ0V2bvEGcw9ydlJWblR3LwVnaz9SYtVmYh9iclFGbt9SaulGdugXbsx3cs9mdl5WahxXYyNGapZXZ8tHZv1WYp5mOnMHbvZXZulWYnwCchJXYtVGdlJnOn0UQQdSf;

Mileusnić Z.I., Petrović D.V., Đević M.S. 2010. Comparison of tillage systems according to fuel consumption. Energy, 35, 221-228. doi:10.1016/j.energy.2009.09.012

Mrhar M. (1995). Racionalna obdelava tal. Ljubljana, Kmetijski inštitut Slovenije: 109 str.

Ozkan B., Fert C., Karadeniz C. F. (2007). Energy and cost analysis for greenhouse and open-field grape production. Energy, 32, 1500-1504.

Sommer C. (1974). Die Verdichtungsempfindlichkeit zweier Ackerböden. Dissertation. Braunschweig, Technische Universität: 158 str.

Sommer C., Zach M. (1986). Bodenverdichtungen und deren Auswirkungen auf die Pflanzenentwicklung und den Ertrag. V: Bodenverdichtungen beim Schlepper- und Maschineneinsatz und Möglichkeiten zu ihrer Verminderung. KTBL-Schrift, 308, 73-88.

Stajnko D. (2017). Obdelovanje tal in protierozijska zaščita na vodovarstvenih območjih. Maribor, Univerzitetna založba Univerze v Mariboru: 100 str. doi:10.18690/978-961-286-066-0

Strudley M. W., Green T. R., Ascough I. I., James C. (2008). Tillage effects on soil hydraulic properties in space and time: state of the science. Soil and Tillage Research, 99, 4-48. doi:10.1016/j.still.2008.01.007

Šarauskis E., Buragiene S., Masilionytė L., Romaneckas K., Avižienytė D., Sakalauskas D. (2014). Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy, 69, 220-235. doi:10.1016/j.energy.2014.02.090

Tabatabaeefar A., Emamzadeh H., Gasemi Varnamkhasti M., Rahimizadeh R., Karimi M. (2009). Comparison of energy of tillage systems in wheat production. Energy, 34, 41-45. doi:10.1016/j.energy.2008.09.023

Zeyada A. M., Al-Gaadi K. A., Tola E., Madugundu R., Kayad A. G. (2017). Impact of soil firmness and tillage depth on irrigated maize silage performance. Applied Engineering in Agriculture, 33, 491-498. doi:10.13031/aea.11641




DOI: http://dx.doi.org/10.14720/aas.2018.111.3.15

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Rajko Bernik

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.

                           


eISSN 1854-1941