Methods for measuring soil water content
Abstract
Keywords
Full Text:
PDF (Slovensko (Slovenian))References
Adeyemi, O., Grove, I., Peets, S., & Norton, T. (2017). Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability, 9(3), 353. https://doi.org/10.3390/su9030353
Annan, A. P. (2002). GPR—History, Trends, and Future Developments. Subsurface Sensing Technologies and Applications, 3(4), 253–270. https://doi.org/10.1023/A:1020657129590
Bayer, A., Mahbub, I., Chappell, M., Ruter, J., & van Iersel, M. W. (2013). Water Use and Growth of Hibiscus acetosella “Panama Red” Grown with a Soil Moisture Sensor-controlled Irrigation System. Hortscience, 48(8), 980–987. https://doi.org/10.21273/HORTSCI.48.8.980
Bittelli, M. (2011). Measuring Soil Water Content: A Review. HortTechnology, 293–300. https://doi.org/10.21273/HORTTECH.21.3.293
Blonquist Jr., J. M., Jones, S. B., & Robinson, D. A. (2005). A time domain transmission sensor with TDR performance characteristics. Journal of Hydrology, 314(1), 235–245. https://doi.org/10.1016/j.jhydrol.2005.04.005
Blonquist, J. M., Jones, S. B., & Robinson, D. A. (2006). Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agricultural Water Management, 84(1), 153–165. https://doi.org/10.1016/j.agwat.2006.01.014
Bogena, H.R., Huisman, J. A., Oberdörster, C., & Vereecken, H. (2007). Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology, 344(1–2), 32–42. https://doi.org/10.1016/j.jhydrol.2007.06.032
Bogena, Heye Reemt, Huisman, J. A., Schilling, B., Weuthen, A., & Vereecken, H. (2017). Effective Calibration of Low-Cost Soil Water Content Sensors. Sensors, 17(1), 208. https://doi.org/10.3390/s17010208
Chanzy, A., Gaudu, J.-C., & Marloie, O. (2012). Correcting the temperature influence on soil capacitance sensors using diurnal temperature and water content cycles. Sensors, 12(7), 9773–9790. https://doi.org/10.3390/s120709773
Chen, H. B., Ye, L. M., & Shi, L. K. (2013). An analysis of the effects on calibration parameters of FDR for moisture sensor caused by different kinds of soils. Applied Mechanics and Materials; Zurich, 401–403, 968. http://dx.doi.org/10.4028/www.scientific.net/AMM.401-403.968
Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M. A., & Basile, A. (2013). Measuring and modeling water content in stony soils. Soil and Tillage Research, 128, 9–22. https://doi.org/10.1016/j.still.2012.10.006
Cosh, M. H., Jackson, T. J., Bindlish, R., Famiglietti, J. S., & Ryu, D. (2005). Calibration of an impedance probe for estimation of surface soil water content over large regions. Journal of Hydrology, 311(1–4), 49–58. https://doi.org/10.1016/j.jhydrol.2005.01.003
Davis, J. L., Annan, A. P. (2002). Ground penetrating radar to measure soil water content. V: Dane, J. H., Topp, G. C. (ed.) Methods of Soil Analysis. Part 4 - Physical Methods. SSSA Book Series. Madison, Wisconsin, USA, Soil Science Society of America Book Series
Dean, T. J., Bell, J. P., & Baty, A. J. B. (1987). Soil moisture measurement by an improved capacitance technique, Part I. Sensor design and performance. Journal of Hydrology, 93(1), 67–78. https://doi.org/10.1016/0022-1694(87)90194-6
Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458–459, 110–117. https://doi.org/10.1016/j.jhydrol.2012.06.021
Domínguez-Niño, J. M., Bogena, H. R., Huisman, J. A., Schilling, B., & Casadesús, J. (2019). On the accuracy of factory-calibrated low-cost soil water content sensors. Sensors, 19(14). https://doi.org/10.3390/s19143101
Evett, S.R. (2000) Some aspects of time domain reflectometry, neutron scattering and capacitance methods for soil water content measurement; International Atomic Energy Agency: Vienna, Austria, 2000: 5-50 str. https://inis.iaea.org/search/search.aspx?orig_q=RN:31014385 (26.3.2020)
Evett, S. R., & Parkin, G. W. (2005). Advances in soil water content sensing. Vadose Zone Journal, 4(4), 986. https://doi.org/10.2136/vzj2005.0099
Evett, Steven R., Tolk, J. A., & Howell, T. A. (2006). Soil profile water content determination. Vadose Zone Journal, 5(3), 894. https://doi.org/10.2136/vzj2005.0149
Fares, A., & Alva, A. K. (2000). Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile. Irrigation Science, 19(2), 57–64. https://doi.org/10.1007/s002710050001
Fares, A., Abbas, F., Maria, D., & Mair, A. (2011). Improved calibration functions of three capacitance probes for the measurement of soil moisture in tropical soils. Sensors, 11(5), 4858–4874. https://doi.org/10.3390/s110504858
Fares, A., Awal, R., & Bayabil, H. K. (2016). Soil water content sensor response to organic matter content under laboratory conditions. Sensors, 16(8). https://doi.org/10.3390/s16081239
Fellner-Feldegg, H. (1969). Measurement of dielectrics in the time domain. The Journal of Physical Chemistry, 73(3), 616–623. https://doi.org/10.1021/j100723a023
Gaskin, G. J., & Miller, J. D. (1996). Measurement of soil water content using a simplified impedance measuring technique. Journal of Agricultural Engineering Research, 63(2), 153–159. https://doi.org/10.1006/jaer.1996.0017
Geesing, D., Bachmaier, M., & Schmidhalter, U. (2004). Field calibration of a capacitance soil water probe in heterogeneous fields. Australian Journal of Soil Research, 42. https://doi.org/10.1071/SR03051
Gherboudj, I., Magagi, R., Berg, A. A., & Toth, B. (2017). Characterization of the spatial variability of in-situ soil moisture measurements for upscaling at the spatial resolution of RADARSAT-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 1813–1823. https://doi.org/10.1109/JSTARS.2017.2649219
Gong, Y., Cao, Q., & Sun, Z. (2003). The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrological Processes, 17(18), 3601–3614. https://doi.org/10.1002/hyp.1358
Gonzalez-Teruel, J. D., Torres-Sanchez, R., Blaya-Ros, P. J., Toledo-Moreo, A. B., Jimenez-Buendia, M., & Soto-Valles, F. (2019). Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors, 19(3), 491. https://doi.org/10.3390/s19030491
Gardner, W., & Kirkham, D. (1952). Determination of soil moisture by neutron scattering: Soil Science, 73(5), 391–402. https://doi.org/10.1097/00010694-195205000-00007
Hanson, B. R, Peters, D., (2000) Soil type affects accuracy of dielectric moisture sensors. California Agriculture, 54(3), 43-47. https://doi.org/10.3733/ca.v054n03p43
Hajdu, I., Yule, I., Bretherton, M., Singh, R., & Hedley, C. (2019). Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils. Agricultural Water Management, 217, 332–345. https://doi.org/10.1016/j.agwat.2019.03.002
Heng, L. K., Evett, S. (2008). Tensiometers. V: Field estimation of soil water content. A practical guide to methods, instrumentation and sensor technology. Training course series 30. Vienna, International Atomic Energy Agency: 113-121
Hignett, C., Evett, S. (2008). Direct and surrogate measures of soil water content. V: field estimation of soil water content. A practical guide to methods, instrumentation and sensor technology. Training course series 30. Vienna, International Atomic Energy Agency: 1-21
Holzman, M., Rivas, R., Carmona, F., & Niclos, R. (2017). A method for soil moisture probes calibration and validation of satellite estimates. Methodsx, 4, 243–249. https://doi.org/10.1016/j.mex.2017.07.004
Huisman, J. A., Sperl, C., Bouten, W., & Verstraten, J. M. (2001). Soil water content measurements at different scales: Accuracy of time domain reflectometry and ground-penetrating radar. Journal of Hydrology, 245(1–4), 48–58. https://doi.org/10.1016/S0022-1694(01)00336-5
IMKO. (1996). Theoretical aspects on measuring moisture using TRIME®.
IMKO Micromodultechnik GmbH, Ettlingen, Germany. Cit po: Dettmann, U., & Bechtold, M. (2018). Evaluating commercial moisture probes in reference solutions covering mineral to peat soil conditions. Vadose Zone Journal, 17(1), 0. https://doi.org/10.2136/vzj2017.12.0208
Incrocci, L., Marzialetti, P., Incrocci, G., Di Vita, A., Balendonck, J., Bibbiani, C., Spagnol, S., & Pardossi, A. (2019). Sensor-based management of container nursery crops irrigated with fresh or saline water. Agricultural Water Management, 213, 49–61. https://doi.org/10.1016/j.agwat.2018.09.054
ISO 11465. Soil quality - Determination of dry matter and water content on a mass basis - Gravimetric method. (1993): 3 str.
Iwata, Y., Miyamoto, T., Kameyama, K., & Nishiya, M. (2017). Effect of sensor installation on the accurate measurement of soil water content. European Journal of Soil Science, 68(6), 817–828. https://doi.org/10.1111/ejss.12493
Jones, S. B., Wraith, J. M., & Or, D. (2002). Time domain reflectometry measurement principles and applications. Hydrological Processes, 16(1), 141–153. https://doi.org/10.1002/hyp.513
Kaptein, N. D., Light, M. E., & Savage, M. J. (2019). Sensors for the improvement of irrigation efficiency in nurseries. Water, 45(3), 527–535. https://doi.org/10.17159/wsa/2019.v45.i3.6750
Kassaye, K. T., Boulange, J., Saito, H., & Watanabe, H. (2019). Calibration of capacitance sensor for Andosol under field and laboratory conditions in the temperate monsoon climate. Soil and Tillage Research, 189, 52–63. https://doi.org/10.1016/j.still.2018.12.020
Kinzli, K.-D., Manana, N., & Oad, R. (2012). Comparison of laboratory and field calibration of a soil-moisture capacitance probe for various soils. Journal of Irrigation & Drainage Engineering, 138(4), 310–321. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000418
Knight, R. (2001). Ground penetrating radar for environmental applications. Annual Review of Earth & Planetary Sciences, 29(1), 229. https://doi.org/10.1146/annurev.earth.29.1.229
Lauer, D. T. (1997). The Landsat program: its origins, evolution, and impacts. Photogrammetric Engineering & Remote Sensing, 63(7), 831-383
Lekshmi, S. U. S., Singh, D. N., Baghini, M. S. (2014). A critical review of soil moisture measurement. Measurement, 54, 92-105
Li, D., Franssen, H.-J. H., Han, X., Angel Jimenez-Bello, M., Martinez Alzamora, F., & Vereecken, H. (2018). Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain. Agricultural Water Management, 208, 465–477. https://doi.org/10.1016/j.agwat.2018.06.022
Lozoya, C., Mendoza, C., Aguilar, A., Roman, A., & Castello, R. (2016). Sensor-based model driven control strategy for precision irrigation. Journal of Sensors, 9784071. https://doi.org/10.1155/2016/9784071
Malicki, M. A., Plagge, R., & Roth, C. H. (1996). Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European Journal of Soil Science, 47(3), 357–366. https://doi.org/10.1111/j.1365-2389.1996.tb01409.x
Malmberg, C. G., & Maryott, A. A. (1956). Dielectric constant of water from 0 to 100 C. Journal of Research of the National Bureau of Standards, 56(1), 1. https://doi.org/10.6028/jres.056.001
Matula, S., Batkova, K., & Legese, W. L. (2016). Laboratory performance of five selected soil moisture sensors applying factory and own calibration equations for two soil media of different bulk density and salinity levels. Sensors, 16(11), 1912. https://doi.org/10.3390/s16111912
Millan, S., Casadesus, J., Campillo, C., Jose Monino, M., & Henar Prieto, M. (2019). Using soil moisture sensors for automated irrigation scheduling in a plum crop. Water, 11(10), 2061. https://doi.org/10.3390/w11102061
Mittelbach, H., Lehner, I., & Seneviratne, S. I. (2012). Comparison of four soil moisture sensor types under field conditions in Switzerland. Journal of Hydrology, 430–431, 39–49. https://doi.org/10.1016/j.jhydrol.2012.01.041
Muñoz-Carpena, R. (2004). Field devices for monitoring soil water content. Agricultural and Biological Engineering Department, University of Florida. BUL343 (https://edis.ifas.ufl.edu/ae266) 21. 6. 2019
Nemali, K. S., & van Iersel, M. W. (2006). An automated system for controlling drought stress and irrigation in potted plants. Scientia Horticulturae, 110(3), 292–297. https://doi.org/10.1016/j.scienta.2006.07.009
Nemali, K. S., Montesano, F., Dove, S. K., & van Iersel, M. W. (2007). Calibration and performance of moisture sensors in soilless substrates: ECH2O and Theta probes. Scientia Horticulturae, 112(2), 227–234. https://doi.org/10.1016/j.scienta.2006.12.013
Noborio, K. (2001). Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Computers and Electronics in Agriculture, 31(3), 213–237. https://doi.org/10.1016/S0168-1699(00)00184-8
Ojo, E. R., Bullock, P. R., & Fitzmaurice, J. (2015). Field performance of five soil moisture instruments in heavy clay soils. Soil Science Society of America Journal; Madison, 79(1), 20–29.
Papanikolaou, C., & Sakellariou-Makrantonaki, M. (2013). The effect of an intelligent surface drip irrigation method on sorghum biomass, energy and water savings. Irrigation Science, 31(4), 807–814. https://doi.org/10.1007/s00271-012-0344-2
Pardossi, A., Incrocci, L., Incrocci, G., Malorgio, F., Battista, P., Bacci, L., Rapi, B., Marzialetti, P., Hemming, J., & Balendonck, J. (2009). Root zone sensors for irrigation management in intensive agriculture. Sensors, 9(4), 2809–2835. https://doi.org/10.3390/s90402809
Parvin, N., & Degre, A. (2016). Soil-specific calibration of capacitance sensors considering clay content and bulk density. Soil Research, 54. https://doi.org/10.1071/SR15036
Petropoulos, G. P., Ireland, G., & Barrett, B. (2015). Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Physics and Chemistry of the Earth, Parts A/B/C, 83–84, 36–56. https://doi.org/10.1016/j.pce.2015.02.009
Provenzano, G., Rallo, G., & Ghazouani, H. (2015). Assessing field and laboratory calibration protocols for the Diviner 2000 probe in a range of soils with different textures. Journal of Irrigation and Drainage Engineering, 142, 04015040. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000950
Raine, S. R., Meyer, W. S., Rassam, D. W., Hutson, J. L., & Cook, F. J. (2007). Soil–water and solute movement under precision irrigation: Knowledge gaps for managing sustainable root zones. Irrigation Science, 26(1), 91–100. https://doi.org/10.1007/s00271-007-0075-y
Roberti, J. A., Ayres, E., Loescher, H. W., Tang, J., Starr, G., Durden, D. J., … Zulueta, R. C. (2018). A robust calibration method for continental-scale soil water content measurements. Vadose Zone Journal, 17(1), UNSP 170177. https://doi.org/10.2136/vzj2017.10.0177
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., … Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7(1), 358. https://doi.org/10.2136/vzj2007.0143
Rowlandson, T. L., Berg, A. A., Bullock, P. R., Ojo, E. R., McNairn, H., Wiseman, G., & Cosh, M. H. (2013). Evaluation of several calibration procedures for a portable soil moisture sensor. Journal of Hydrology, 498, 335–344. https://doi.org/10.1016/j.jhydrol.2013.05.021
Sevostianova, E., Deb, S., Serena, M., VanLeeuwen, D., & Leinauer, B. (2015). Accuracy of two electromagnetic soil water content sensors in saline soils. Soil Science Society of America Journal, 79(6), 1752. https://doi.org/10.2136/sssaj2015.07.0271
Seyfried, M. S., Grant, L. E., Du, E., & Humes, K. (2005). Dielectric loss and calibration of the hydra probe soil water sensor. Vadose Zone Journal, 4(4), 1070–1079. https://doi.org/10.2136/vzj2004.0148
Shamir, O., Goldshleger, N., Basson, U., & Reshef, M. (2018). Laboratory Measurements of Subsurface Spatial Moisture Content by Ground-Penetrating Radar (GPR) Diffraction and Reflection Imaging of Agricultural Soils. Remote Sensing, 10(10), 1667. https://doi.org/10.3390/rs10101667
Sharma, H., Shukla, M. K., Bosland, P. W., & Steiner, R. (2017). Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers. Agricultural Water Management, 179, 81–91. https://doi.org/10.1016/j.agwat.2016.07.001
Sheets, K. R., & Hendrickx, J. M. H. (1995). Noninvasive soil water content measurement using electromagnetic induction. Water Resources Research, 31(10), 2401–2409. https://doi.org/10.1029/95WR01949
Soulis, K. X., Elmaloglou, S., & Dercas, N. (2015). Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems. Agricultural Water Management, 148, 258–268. https://doi.org/10.1016/j.agwat.2014.10.015
Souza, C. F., Conchesqui, M. E. S., & da Silva, M. B. (2019). Semiautomatic irrigation management in tomato. Engenharia Agricola, 39, 118–125. https://doi.org/10.1590/1809-4430-Eng.Agric.v39nep118-125/2019
Spelman, D., Kinzli, K.-D., & Kunberger, T. (2013). Calibration of the 10HS soil moisture sensor for southwest Florida agricultural soils. Journal of Irrigation & Drainage Engineering, 139(12), 965–971. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000647
Spittlehouse, D. L. (2000). Using time domain reflectometry in stony forest soil. Canadian Journal of Soil Science, 80(1), 3–11. https://doi.org/10.4141/S99-004
Starr, J. L., Paltineanu, I. C. (1998). Real-time soil water dynamics over large areas using multisensor capacitance probes and monitoring system. Soil & Tillage Research, 47: 43-49
Starr, J. L., Paltineanu, I. C. (2002). Capacitance devices. V: Dane J.H., Topp G.C. (ed.) Methods of soil analysis. Part 4 - Physical Methods. SSSA Book Series. Madison, Wisconsin, USA, Soil Science Society of America Book Series
Teixeira, W. G., Schroth, G., Marques, J. D., & Huwe, B. (2003). Sampling and TDR probe insertion in the determination of the volumetric soil water content. Revista Brasileira de Ciência Do Solo, 27(4), 575–582. https://doi.org/10.1590/S0100-06832003000400001
Thessler, S., Kooistra, L., Teye, F., Huitu, H., & Bregt, A. K. (2011). Geosensors to support crop production: current applications and user requirements. Sensors, 11(7), 6656–6684. https://doi.org/10.3390/s110706656
Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582. https://doi.org/10.1029/WR016i003p00574
Topp, G. C., Ferré, P. A. (2002). General information. Scope of methods and brief description. V: Dane, J. H., Topp, G. C. (ed.) Methods of Soil Analysis. Part 4 - Physical Methods. SSSA Book Series. Madison, Wisconsin, USA, Soil Science Society of America Book Series
Topp, G., & Reynolds, W. D. (1998). Time domain reflectometry: A seminal technique for measuring mass and energy in soil. Soil and Tillage Research, 47(1), 125–132. https://doi.org/10.1016/S0167-1987(98)00083-X
Varble, J. L., & Chávez, J. L. (2011). Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado. Agricultural Water Management, 101(1), 93–106. https://doi.org/10.1016/j.agwat.2011.09.007
Vaz, C., Jones, S., Meding, S., & Tuller, M. (2013). Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone Journal, 12. https://doi.org/10.2136/vzj2012.0160
Vellidis, G., Tucker, M., Perry, C., Kvien, C., & Bednarz, C. (2008). A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture, 61(1), 44–50. https://doi.org/10.1016/j.compag.2007.05.009
Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., … Vanderborght, J. (2014). On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 516, 76–96. https://doi.org/10.1016/j.jhydrol.2013.11.061
Visconti, F., de Paz, J. M., Martínez, D., & Molina, M. J. (2014). Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agricultural Water Management, 132, 111–119. https://doi.org/10.1016/j.agwat.2013.10.005
Waite, A., & Schmidt, S. (1962). Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. Proceedings of the IRE, 50(6), 1515–1520. https://doi.org/10.1109/JRPROC.1962.288195
Walthert, L., & Schleppi, P. (2018). Equations to compensate for the temperature effect on readings from dielectric Decagon MPS-2 and MPS-6 water potential sensors in soils. Journal of Plant Nutrition and Soil Science, 181(5), 749–759. https://doi.org/10.1002/jpln.201700620
Weitz, A. M., Grauel, W. T., Keller, M., & Veldkamp, E. (1997). Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin. Water Resources Research, 33(6), 1241–1249. https://doi.org/10.1029/96WR03956
Zettl, J. D., Huang, M., Barbour, S. L., & Si, B. C. (2015). Density-dependent calibration of multisensor capacitance probes in coarse soil. Canadian Journal of Soil Science, 95(4), 331–336. https://doi.org/10.4141/CJSS-2015-021
Zotarelli, L., Dukes, M. D., Scholberg, J. M. S., Femminella, K., & Muñoz-Carpena, R. (2011). Irrigation scheduling for green bell peppers using capacitance soil moisture sensors. Journal of Irrigation & Drainage Engineering, 137(2), 73–81. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000281
Zupanc, V., & Pintar, M. (2007). Metode za merjenje količine vode v tleh 1. Del: Tenziometer. Acta agriculturae Slovenica, 89(1), 279-287
Zupanc, V., Pintar, M., Korpar, P., Železnik Bračič, B., Urbanc, J., Šturm, M., Lojen, S., Knapič, M. (2009). Use of stable isotopes in Soil - Water - Plant studies. IAEA Technical Meeting on innovative methods for maintenance and guidelines for modernization of nuclear instruments applied in the fields of food and agriculture and environmental quality management. May 25-29, 2009. IAEA, Vienna
DOI: http://dx.doi.org/10.14720/aas.2021.117.2.1618
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Urša Pečan, Vesna Zupanc, Marina Pintar
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941