Combining ability for morphological and nutritional traits in a diallel cross of tomato (Solanum lycopersicum L.)
Abstract
Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops grown in Nigeria, either for fresh market or industrial purposes, necessitating the development of a robust tomato breeding programme aimed at maximizing genetic improvement on economically important traits. In this study, the combining ability, nature of gene action, heterosis, and heritability for morphological, nutritional, and physicochemical parameters of tomato were examined in five tomato parents and ten F1 offsprings, generated with a 5 × 5 half diallel mating design in the greenhouse in 2017. The field evaluation was conducted at the Teaching and Research Farm of Ladoke Akintola University of Technology, Ogbomoso, Nigeria during the cropping season of 2018 using a randomized complete block design with three replications. Analysis of variance for combing ability revealed that both additive and nonadditive gene actions contributed to the fundamental genetic mechanism underlying the inheritance of the measured traits. The top two general combiner parents were UC-OP and Ib-local. Furthermore, the best tomato hybrid specific combiners were FDT4 × UC-OP, FDT2 × Ib-local and UC-OP × Ib-local which involved one parent having a high general combining ability effect for fruit yield and the other having other desirable traits. These hybrids may be further utilized in tomato breeding programmes.
Keywords
Full Text:
PDFReferences
Acharya, B., Dutta, S., Dutta, S., & Chattopadhyay, A. (2018). Breeding tomato for simultaneous improvement of processing quality, fruit yield, and dual disease tolerance. International Journal of Vegetable Science, 24(5), 407-423. https://doi.org/10.1080/19315260.2018.1427648
Agarwal, A., Arya, D. N., Ranjan, R., & Ahmed, Z. A. K. W. A. N. (2014). Heterosis, combining ability and gene action for yield and quality traits in tomato (Solanum lycopersicum L.). Helix, 2, 511-515.
Agong, S. G., Schittenhelm, S., & Friedt, W. (1997). Assessment of tolerance to salt stress in Kenyan tomato germplasm. Euphytica, 95(1), 57-66. https://doi.org/10.1023/A:1002933325347
Agong, S. G., Schittenhelm, S., & Friedt, W. (2001). Genotypic variation of Kenyan tomato (Lycopersicon esculentum Mill.) germplasm. Journal of food technology in Africa, 6(1), 13-17. https://doi.org/10.4314/jfta.v6i1.19277
Ahmad, S., Quamruzzaman, A. K. M., & Nazim Uddin, M. (2009). Combining ability estimates of tomato (Solanum lycopersicum) in late summer. SAARC Journal of Agriculture, 7(1), 43-56.
Al-Tabbal, J. A., & Al-Fraihat, A. H. (2012). Genetic variation, heritability, phenotypic and genotypic correlation studies for yield and yield components in promising barley genotypes. Journal of Agricultural Science, 4(3), 193. https://doi.org/10.5539/jas.v4n3p193
Avdikos, I. D., Nteve, G. M., Apostolopoulou, A., Tagiakas, R., Mylonas, I., Xynias, I. N., ... & Mavromatis, A. G. (2021). Analysis of re-heterosis for yield and fruit quality in restructured hybrids, generated from crossings among tomato recombinant lines. Agronomy, 11(5), 822. https://doi.org/10.3390/agronomy11050822
Bahari, M., Rafii, M. Y., Saleh, G. B., & Latif, M. A. (2012). Combining ability analysis in complete diallel cross of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). The Scientific World Journal, 2012. https://doi.org/10.1100/2012/543158
Baker, R. J. (1978). Issues in diallel analysis. Crop Science, 18(4), 533-536. https://doi.org/10.2135/cropsci1978.0011183X001800040001x
Bozokalfa, K. M., İlbi, E. D., & Aşçioğul, K. T. (2010). Estimates of genetic variability and association studies in quantitative plant traits of Eruca spp. landraces. Genetika, 42(3), 501-512. https://doi.org/10.2298/GENSR1003501B
Burdick, A. B. (1954). Genetics of heterosis for earliness in the tomato. Genetics, 39(4), 488. https://doi.org/10.1093/genetics/39.4.488
Christie, B. R., & Shattuck, V. I. (1992). The diallel cross: design, analysis, and use for plant breeders. Plant Breeding Reviews, 9(1), 9-36. https://doi.org/10.1002/9780470650363.ch2
Dar, R. A., & Sharma, J. P. (2011). Genetic variability studies of yield and quality traits in tomato (Solanum lycopersicum L.). International Journal of Plant Breeding and Genetics, 5(2), 168-174. https://doi.org/10.3923/ijpbg.2011.168.174
de Souza, L. M., Paterniani, M. E. A., de Melo, P. C. T., & de Melo, A. M. (2012). Diallel cross among fresh market tomato inbreeding lines. Horticultura Brasileira, 30(2), 246-251. https://doi.org/10.1590/S0102-05362012000200011
Dharmatti, P. R., Madalageri, B. B., Patil, R. V., & Gasti, V. D. (1996). Heterosis studies in tomato. Karnatka Journal of Agricultural Science, 9: 642-648
Dufera, J. T., Mohammed, W., Hussien, S., & Kumar, V. (2018). Genetic analysis for fruit yield and quality attributes in some processing and fresh market tomato genotypes. International Journal of Vegetable Science, 24(3), 227-235. https://doi.org/10.1080/19315260.2017.1410873
Dundi, K. B., & Madalageri, B. B. (1991). Heterosis for shelf life and its components in tomato (Lycoperscion esculentum Mill). South Indian Hort, 39(6), 353-355.
Falconer, D. S. (1989). Introduction to quantitative genetics 3rd ed. London, Harlow: Longman Scientific & Technical.
Farzane, A., Nemati, H., Arouiee, H., Kakhki, A. M., & Vahdati, N. (2012). The estimate of combining ability and heterosis for yield and yield components in tomato (Lycopersicon esculentum Mill.). Journal of Biodiversity and Environmental Sciences, 6(17), 129-134.
Gayosso-Barragán, O., López-Benítez, A., Rodríguez-Herrera, S. A., Ek-Maas, J. N., Hidalgo-Ramos, D. M., & Alcala-Rico, J. S. G. J. (2019). Studies on combining ability in tomato (Solanum lycopersicum L.). Agronomy Research, 17(1), 77-85.
Geleta, L. F., & Labuschagne, M. T. (2006). Combining ability and heritability for vitamin C and total soluble solids in pepper (Capsicum annuum L.). Journal of the Science of Food and Agriculture, 86(9), 1317-1320. https://doi.org/10.1002/jsfa.2494
Govindarasu, P., Muthukrishnan, C. R., & Irulappan, I. (1981). Combining-ability for yield and its components in tomato. Scientia Horticulturae, 14(2), 125-130.
Griffing, B. R. U. C. E. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian journal of biological sciences, 9(4), 463-493. https://doi.org/10.1071/BI9560463
Gurmu, F., Hussein, S., & Laing, M. (2018). Combining ability, heterosis, and heritability of storage root dry matter, beta-carotene, and yield-related traits in sweet potato. HortScience, 53(2), 167-175. https://doi.org/10.21273/HORTSCI12280-17
Hannan, M. M., Ahmed, M. B., Roy, U. K., Razvy, M. A., Haydar, A., Rahman, M. A., ... & Islam, R. (2007). Heterosis, combining ability and genetics for brix %, days to first fruit ripening and yield n tomato (Lycopersicon esculentum Mill.). Middle East Journal of Scientific Research, 2(3-4), 128-131.
Haydar, A., Mandal, M. A., Ahmed, M. B., Hannan, M. M., Karim, R., Razvy, M. A., ... & Salahin, M. (2007). Studies on genetic variability and interrelationship among the different traits in tomato (Lycopersicon esculentum Mill.). Middle East Journal of Sciences Resources, 2(3-4), 139-142. https://doi.org/10.3390/agronomy11050822
Ibitoye, D., Kolawole, A., & Feyisola, R. (2020). Assessment of wild tomato accessions for fruit yield, physicochemical and nutritional properties under a rain forest agro-ecology. Genetic Resources, 1(2), 1-11. https://doi.org/10.46265/genresj.BJCV8100
Kaushik, P., & Dhaliwal, M. S. (2018). Diallel analysis for morphological and biochemical traits in tomato cultivated under the influence of tomato leaf curl virus. Agronomy, 8(8), 153. https://doi.org/10.3390/agronomy8080153
Kolawole, A. O., Menkir, A., Blay, E., Ofori, K., & Kling, J. G. (2019). Changes in heterosis of maize (Zea mays L.) varietal cross hybrids after four cycles of reciprocal recurrent selection. Cereal Research Communications, 47(1), 145-156. https://doi.org/10.1556/0806.46.2018.065
Kumar, K., Sharma, D., Singh, J., Sharma, T. K., Kurrey, V. K., & Minz, R. R. (2018). Combining ability analysis for yield and quality traits in tomato (Solanum lycopersicum L.). Journal of Pharmacognosy and Phytochemistry, 7(6), 1002-1005.
Kurian, A., Peter, K. V., & Rajan, S. (2006). Heterosis for yield components and fruit characters in tomato. Journal of Tropical Agriculture, 39(1), 5-8.
Mageswari, K., & Natarajan, S. (1999). Studies on heterosis for yield and quality in tomato (Lycopersicon esculentum Mill.). South Indian Horticulture, 47(1/6), 216-217.
Makesh, S. (2002). Heterosis studies for quality and yield in tomato (Lycopersicon esculentum Mill.). Advances in Plant Sciences, 15, 597-601.
Mather, K., & Jinks, J. L. (1971). Biometrical genetics. 2nd ed. London, Chapman and Hall Ltd. https://doi.org/10.1007/978-1-4899-3404-8
Mitchell, J. P., Shennan, C., Grattan, S. R., & May, D. M. (1991). Tomato fruit yields and quality under water deficit and salinity. Journal of the American Society for Horticultural Science, 116(2), 215-221. https://doi.org/10.21273/JASHS.116.2.215
Mohamed, S. M., Ali, E. E., & Mohamed, T. Y. (2018). Study of heritability and genetic variability among different plant and fruit characters of tomato (Solanum lycopersicum L.). International Journal of Scientific and Technological Research, 1, 55-58.
Ngosong, C., Tanyi, C., Njume, C., Mfombep, P., & Okolle, J. (2017). Potential of dual-purpose organic amendment for enhancing tomato (Lycopersicon esculentum M.) performance and mitigating seedling damage by mole cricket (Gryllotalpa africana spp.). International Journal of Plant & Soil Science, 20(6), 1-12. https://doi.org/10.9734/IJPSS/2017/38666
Nzuve, F., Githiri, S., Mukunya, D. M., & Gethi, J. (2014). Genetic variability and correlation studies of grain yield and related agronomic traits in maize. Journal of Agricultural Science, 6, 166-176. https://doi.org/10.5539/jas.v6n9p166
Osei, M. K., Akromah, R., Shih, S. L., & Green, S. K. (2010). Evaluation of some tomato germplasm for resistance to tomato yellow leaf curl virus (TYLCV) disease in Ghana. Applied Biology, 96, 315-323.
Osekita, O. S., & Ademiluyi, A. T. (2014). Genetic advance, heritability and character association of component of yield in some genotypes of tomato Lycopersicon esculentum (Mill.) Wettsd. Academia Journal of Biotechnology, 2(1), 6-10.
Palozza, P., Simone, R. E., Catalano, A., & Mele, M. C. (2011). Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers, 3(2), 2333-2357. https://doi.org/10.3390/cancers3022333
Pandey, V. R., Tiwari, D. K., Yadav, S. K., & Pandey, P. (2015). Studies on direct selection parameters for seed yield and its component traits in pigeonpea [Cajanus cajan (L.) Mill.]. African Journal of Agricultural Research, 10(6), 485-490. https://doi.org/10.5897/AJAR2013.8342
Pandiarana, N., Chattopadhyay, A., Seth, T., Shende, V. D., Dutta, S., & Hazra, P. (2015). Heterobeltiosis, potence ratio and genetic control of processing quality and disease severity traits in tomato. New Zealand Journal of Crop and Horticultural Science, 43(4), 282-293. https://doi.org/10.1080/01140671.2015.1083039
Panthee, D. R., Perkins-Veazie, P., Anderson, C., & Ibrahem, R. (2015). Diallel analysis for lycopene content in the hybrids derived from different colored parents in tomato. American Journal of Plant Sciences, 6(09), 1483. https://doi.org/10.4236/ajps.2015.69147
Patil, S., Bhalekar, M. N., Kute, N. S., Shinde, G. C., & Shinde, S. (2013). Genetic variability and interrelationship among different traits in F3 progenies of tomato (Solanum lycopersicum L.). BIOINFOLET-A Quarterly Journal of Life Sciences, 10(2b), 728-732.
Peña, L. A., Molina, G. J. D., Cervantes, S. T., Márquez, S. F., Sahagún, C. J., & Ortiz, C. J. (1998). Heterosis between varieties of husk tomato (Physalis ixocarpa Brot.). Revista Chapingo Serie Horticultura, 4, 31-37. https://doi.org/10.5154/r.rchsh.1997.12.093
Pradeepkumar, T., Joy, D. B., Radhakrishnan, N. V., & Aipe, K. C. (2001). Genetic variation in for yield and resistance to bacterial wilt. Journal of Tropical Agriculture, 39, 157-158.
Rai, G. K., Kumar, R., Singh, A. K., Rai, P. K., Rai, M., Chaturvedi, A. K., & Rai, A. B. (2012). Changes in antioxidant and phytochemical properties of tomato (Lycopersicon esculentum Mill.) under ambient condition. Pakistian Journal of Botany, 44(2), 667-670.
Rewale, V. S., Bendale, V. W., Bhave, S. G., Madav, R. R., & Jadhav, B. B. (2003). Combining ability of yield and yield components in okra. Journal of Maharashtra Agricultural Universities (India), 28, 244-246.
Rivero, A.G., Keutgen, A.J., & Pawelzik, E. (2022). Antioxidant properties of tomato fruit (Lycopersicon esculentum Mill.) as affected by cultivar and processing method. Horticulturae, 8, 547. https://doi.org/10.3390/horticulturae8060547
Robinson, H. F., Comstock, R. E., & Harvey, P. H. (1949). Estimates of heritability and the degree of dominance in corn. Agronomy Journal, 41, 353–359. https://doi.org/10.2134/agronj1949.00021962004100080005x
Rosales, M. A., Ruiz, J. M., Hernández, J., Soriano, T., Castilla, N., & Romero, L. (2006). Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of the Science of Food and Agriculture, 86(10), 1545-1551. https://doi.org/10.1002/jsfa.2546
Saleem, M. Y., Asghar, M., & Iqbal, Q. (2013b). Augmented analysis for yield and some yield components in tomato (Lycopersicon esculentum Mill.). Pakistian Journal of Botany, 45(1), 215-218.
Saleem, M. Y., Asghar, M., Iqbal, Q., Rahman, A., & Akram, M. (2013a). Diallel analysis of yield and some yield components in tomato (Solanum lycopersicum L.). Pakistian Journal of Botany, 45(4), 1247-1250.
Sanjeev, K. (2010). Genetic variability and interrelationship of traits in F3 progenies of tomato (Lycopersicon esculentum Mill.) under cold desert of Leh-Ladakh. Crop Improvement, 37(1), 66-72.
SAS Institute, (2011). Statistical Analysis Software. Release 9.3. SAS Inst., Cary, NC.
Sekhar, L., Prakash, B. G., Salimath, P. M., Channayya, P., Hiremath Sridevi, O., & Patil, A. A. (2010). Implications of heterosis and combining ability among productive single cross hybrids in tomato.Electronic Journal of Plant Breeding, 1(4), 706-711.
Senapati, B. K., & Kumar, A. (2015). Genetic assessment of some phenotypic variants of rice (Oryza spp.) for some quantitative characters under the Gangatic plains of West Bengal. African Journal of Biotechnology, 14(3), 187-201. https://doi.org/10.5897/AJB2014.13961
Shalaby, T. A. (2013). Mode of gene action, heterosis and inbreeding depression for yield and its components in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 164, 540-543. https://doi.org/10.1016/j.scienta.2013.10.006
Shankar, A., Reddy, R. V. S. K., Sujatha, M., & Pratap, M. (2013). Combining ability and gene action studies for yield and yield contributing traits in tomato (Solanum lycopersicum L.). Helix, 6, 431-435.
Shende, V. D., Tania, S., Subhra, M., & Arup, C. (2012). Breeding tomato (Solanum lycopersicum L.) for higher productivity and better processing qualities. SABRAO Journal of Breeding and Genetics, 44(2), 302-321.
Singh, G., & Nandpuri, K. S. (1974). Combining ability studies in tomato (Lycopersicon esculentum Mill.) cultivars with functional male-sterile lines. Journal Resources Punjab Agricultural University, 7, 367-372. https://doi.org/10.1007/s12041-014-0433-5
Singh, P., & Narayanan, S. S. (1993). Biometrical Techniques in Plant Breeding. New Delhi, Kalyani Publishers.
Singh, P. K., Singh, B., & Pandey, S. (2006). Genetic variability and character association analysis in tomato. Indian Journal of Plant Genetic Resources, 19(2), 196-199.
Singh, R. K., Rai, N., Singh, M., Singh, S. N., & Srivastava, K. (2014). Genetic analysis to identify good combiners for ToLCV resistance and yield components in tomato using interspecific hybridization. Journal of Genetics, 93(3), 623-629.
Singh, R. K., & Chaudhary, B. D. (1977). Biometrical methods in quantitative genetic analysis. Revised Edition. New Delhi: Kalyani.
Singh, S. P., Thakur, M. C., & Pathania, N. K. (2010). Reciprocal cross differences and combining ability studies for some quantitative traits in tomato (Lycopersicon esculentum Mill.) under mid hill conditions of Western Himalayas. Asian Journal of Horticulture, 5(1), 172-176.
Smith, H. H. (1952). Fixing transgressive vigor in Nicotiana rustica. Heterosis. Iowa State College Press, Ames, IA, 161-174. https://doi.org/10.1007/s11032-007-9155-1
Smith, J. S. C., Hussain, T., Jones, E. S., Graham, G., Podlich, D., Wall, S., & Williams, M. (2008). Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops. Molecular Breeding, 22(1), 51-59.
Soresa, D. N., Nayagam, G., Bacha, N., & Jaleta, Z. (2020). Heterosis in tomato (Solanum lycopersicum L.) for yield and yield component traits. Advances in Research, 141-152. https://doi.org/10.9734/air/2020/v21i930242
Sprague, G. F., & Tatum, L. A. (1942). General vs. specific combining ability in single crosses of corn 1. Agronomy Journal, 34(10), 923-932. https://doi.org/10.2134/agronj1942.00021962003400100008x
Thakur, P., Rana, R. S., & Kumar, A. (2017). Biophysical characters of tomato varieties in relation to resistance against tomato fruit borer, Helicoverpa armigera (Hubner). Journal of Entomology and Zoology Studies, 5(6), 108-112.
Thamburaj, S. (1998, December). Breeding for high quality vegetable. In G. Kalloo (Ed.), Souvenir of National Symposium on Emerging Scenario in Vegetable Research and Development (pp. 53-59). India, Varanasi, IIVR.
THI, S. (2009). Diallel analysis of five tomato cultivars and estimation of some genetic parameters for growth and yield characters. Alexandria Science Exchange Journal, 30(APRIL-JUNE), 274-288. https://doi.org/10.21608/asejaiqjsae.2009.3240
Vekariya, T. A., Kulkarni, G. U., Vekaria, D. M., Dedaniya, A. P., & Memon, J. T. (2019). Combining ability analysis for yield and its components in tomato (Solanum lycopersicum L.). Acta Scientific Agriculture, 3(7), 185-191. https://doi.org/10.31080/ASAG.2019.03.0541
Vieira, D. A. D. P., Caliari, M., Souza, E. R. B. D., & Soares, M. S. (2019). Mechanical resistance, biometric and physicochemical characteristics of tomato cultivars for industrial processing. Food Science and Technology, 39, 363-370. https://doi.org/10.1590/fst.32417
Wamm, D. T., Kadams, A. M., & Jonah, P. M. (2010). Combining ability analysis and heterosis in a diallel cross of okra (Abelmoschus esculentus L. Moench). African Journal of Agricultural Research, 5(16), 2108-2115.
Willcox, J. K., Catignani, G. L., & Lazarus, S. (2003). Tomatoes and cardiovascular health. Critical Reviews in Food Science and Nutrition, 43(1), 1-18. https://doi.org/10.1080/10408690390826437
Wynne, J. C., Emery, D. A., & Rice, P. W. (1970). Combining ability estimates in Arachis hypogaea L. II. Field performance of F1 hybrids 1. Crop Science, 10(6), 713-715. https://doi.org/10.2135/cropsci1970.0011183X001000060036x
Yadav, S. K., Singh, B. K., Baranwal, D. K., & Solankey, S. S. (2013). Genetic study of heterosis for yield and quality components in tomato (Solanum lycopersicum). African Journal of Agricultural Research, 8(44), 5585-5591.
YongFei, W., Ming, W., DeYuan, W., & Lei, W. (1998). Studies on heterosis in some processing tomato (Lycopersicon esculentum Mill) lines. Acta Agric Shanghai, 14, 29-34.
DOI: http://dx.doi.org/10.14720/aas.2022.118.4.2234
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Olajoju Lola OLADOKUN, Dolapo Olalekan IBIRINDE, Adesike Oladoyin KOLAWOLE, Charity Onye AREMU
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941