Nano-iron fertilizer effects on some plant traits of dragonhead (Dracocephalum moldavica L.) under different sowing densities
Abstract
evaluate the effects of iron nano-fertilizer rates (0, 1, 2 and 3 g l-1) and planting density levels (10, 15, 20 and 40 cm) on the fresh herb, essential oil content and other traits under the natural conditions. Traits such as number of flowering branches (NFB), height of first flowering branch (HFB), number of secondary branches (NSB), stem diameter (SD), essential oil content (EOC), dry mass (DM), essential oil yield (EOY), total anthocyanins (TA), chlorophyll a (CA), chlorophyll b (CB), flavonoid 270 nm (F270), flavonoid 300 nm (F300), and total flavonoid (TF) were measured. Results showed that the nano Fe treatment × trait (TT) biplot accounted 39 % and 25 % of total variation, respectively. The vertex treatments in polygon biplot were D2-N2 (15 cm density and 1 g l-1 nano-fertilizer) was the best in the EOC, DM and EOY, while D4-N3 (40 cm density and 2 g l-1 nano-fertilizer) was the best for TA, F270, F300 and TF. Sowing densities (10, 15 and 20 cm) with iron nano-fertilizer treatments (1 and 2 g l-1) were the best combinations of evaluated factors for all the measured traits of the dragonhead.
Keywords
Full Text:
PDFReferences
Afolabi A.S. 2007. Status of clean gene (selection marker-free) technology. African Journal of Biotechnology, 6: 2910-2923, doi: 10.5897/AJB2007.000-2460
Atkinson R.G., Gardner R.C. 1991. Agrobacterium-mediated transformation of pepino and regeneration of transgenic plants. Plant Cell Reports, 10: 208-212, doi: 10.1007/BF00234297
Atkinson R.G., Gardner R.C. 1993. Regeneration of transgenic tamarillo plants. Plant Cell Reports, 12: 347-351, doi: 10.1007/BF00237433
Cambia. 1997. pCAMBIA vector release manual version 3.05. Camberra, Center for the application of molecular biology to international agriculture: 6 p.
CERA. 2012. GM crop database. Center for Environmental Risk Assessment (CERA). Washington D.C. ILSI Research Foundation http://cera-gmc.org/index.php?action=gm_crop_database
Cheng Z.M., Schnurr J.A., Kapaun J.A. 1998. Timentin as an alternative antibiotic for suppressin of Agrobacteriu tumefaciens in genetic transformation. Plant Cell Reports, 17: 646-649, doi: 10.1007/s002990050458
Gelvin S.B. 2003. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying tool". Microbiology and Molecular Biology Reviews, 67: 16-37, doi: 10.1128/MMBR.67.1.16-37.2003
Gleave A.P. 1992. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20: 1203-1207, doi: 10.1007/BF00028910
Fisher D.K., Guiltinan M.J. 1995. Rapid, efficient production of homozygous transgenic tobacco plants with Agrobacterium tumefaciens: a seed-to-seed protocol. Plant Molecular Biology Reporter, 13, 3: 278-289, doi: 10.1007/BF02670906
Fuchs R.L., Ream J.E., Hammond B.G., Naylor M.W., Leimgruber R.M., Berberich S.A. 1993. Safety assessment of the neomycin phosphotransferaseII (NPTII) protein. Bio/Technology 11: 1543-1547, doi: 10.1038/nbt1293-1543
Harper B.K., Mabon S.A., Leffel S.M., Halfhill M.D., Richards H.A., Moyer K.A., Stewart C.N. 1999. Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nature Biotechnology, 17: 1125-1129, doi: 10.1038/15114
Haseloff J., Amos B. 1995. GFP in plants. Trends in Genetics 11: 328-329, doi: 10.1016/0168-9525(95)90186-8
Haseloff J., Siemering K.R., Prasher D.C., Hodge S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Science of the United States of America, 94: 2122-2127, doi: 10.1073/pnas.94.6.2122
Hiei Y., Ohta S., Komari T., Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal, 6: 271-282, doi: 10.1046/j.1365-313X.1994.6020271.x
Hiei Y., Komori T., Kubo T. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology, 35: 205-218, doi: 10.1023/A:1005847615493
Horsch R.B., Fraley R.T., Rogers S.G., Sanders P.R., Lloyd A., Hoffmann N. 1984. Inheritance of functional foregin genes in plants. Science, 223: 496-498, doi: 10.1126/science.223.4635.496
Horsch R.B., Fry J.E., Hoffmann N.L., Eichholtz D., Rogers S.G., Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science, 227: 1229-1231, doi: 10.1126/science.227.4691.1229
Jach G., Binot E., Frings S., Luxa K., Schell J. 2001. Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. The Plant Journal, 28: 483-491, doi: 10.1046/j.1365-313X.2001.01153.x
Kump B., Svetek S., Javornik B. 1992. Izolacija visokomolekularne DNA iz rastlinskih tkiv. Zbornik Biotehniške fakultete Univerze v Ljubljani - Kmetijstvo, 59: 63-66
Lakshmi Sita G., Sreenivas G.L., Bhattacharya A. 1998. Agrobacterium mediated transformation of sandalwood (Santalum album L.) a tropical forest tree. Plant Tissue Culture and Biotechnology, 4, 3-4: 189-195
Lippincott-Scgwartz J., Patterson G.H. 2003. Development and use of fluorescent protein markers in living cells. Science, 300, 5616: 87-91, doi: 10.1126/science.1082520
Mann D.G.J., Abercrombie L.L., Rudis M.R., Millwood R.J., Dunlap J.R., Stewart C.N. 2012. Very bright orange fluorescent plants: endoplasmatic reticulum targeting of orange fluorescent proteins as visual reporters in transgenic plants. BMC Biotechnology, 12: 17 p.
Matz M.V., Fradkov A.F., Labas Y.A., Savitsky A.P., Zaraisky A.G., Markelov M.L., Lukyanov S.A. 1999. Fluorescent proteins from nonbiluminescent Anthozoa species. Nature Biotechnology, 17: 969-973, doi: 10.1038/13657
Mercuri A., De Benedetti L., Burchi G., Schiva T. 2000. Agrobacterium-mediated transformation of African violet. Plant Cell, Tissue and Organ Culture, 60: 39-46, doi: 10.1023/A:1006457716959
Miki B., McHugh S. 2004. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. Journal of Biotechnology, 107: 193-232, doi: 10.1016/j.jbiotec.2003.10.011
Murashige T., Skoog H. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-479, doi: 10.1111/j.1399-3054.1962.tb08052.x
Nauerby B., Billing K., Wyndaele R. 1996. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Science, 123: 169-177, doi: 10.1016/S0168-9452(96)04569-4
Park S.H., Rose S.C., Zapata C., Srivatanakul M., Smith R.H. 1998. Cross-protection and selectable marker genes in plant transformation. In Vitro Cellular and Developmental Biology Plant, 34, 2: 117-121, doi: 10.1007/BF02822775
Rao A.Q., Bakhsh A., Kiani S., Shahzad K., Shahid A.A., Husnain T., Riazuddin S. 2009. The myth of plant transformation. Biotechnology Advances, 27: 753-763, doi: 10.1016/j.biotechadv.2009.04.028
Reichel C., Mathur J., Ecke P., Langenkemper K., Koncz C., Schell J., Reiss B., Maas C. 1996. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proceedings of the National academy of Sciences of the United States of America, 93: 5888-5893, doi: 10.1073/pnas.93.12.5888
Stewart C.N. 2005. Monitoring the presence and expression of transgenes in living plants. Trends in Plant Science, 10: 390-396, doi: 10.1016/j.tplants.2005.06.003
Stolarz A., Macewicz J., Lörz H. 1991. Direct somatic embryogenesis and plant regeneration from leaf explants of Nicotiana tabacum L. Journal of Plant Physiology, 137: 347-357, doi: 10.1016/S0176-1617(11)80144-6
Sunilkumar G., Vijayachandra K., Veluthambi K. 1999. Preincubation of cut tobacco leaf explants promotes Agrobacterium-mediated transformation by increasing vir gene induction. Plant Science, 141: 51-58, doi: 10.1016/S0168-9452(98)00228-3
Škof S. 2008. Izražanje markerskih genov pri hmelju (Humulus lupulus L.) in tobaku (Nicotiana tabacum L.). Doktorska disertacija. Ljubljana, Biotehniška fakulteta, Oddelek za agronomijo: 119 p.
Witty M., 1989. Thaumatin II: a simple marker gene for use in plants. Nucleic Acids Research, 17: 3312, doi: 10.1093/nar/17.8.3312
Yao J.L., Cohen D., Atkinson R., Richardson K., Morris B. 1995. Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant cell Reports, 14: 407-412,doi: 10.1007/BF00234044
DOI: http://dx.doi.org/10.14720/aas.2016.107.2.15
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Saeed , YOUSEFZADEH, Naser Sabaghnia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Acta agriculturae Slovenica is an Open Access journal published under the terms of the Creative Commons CC BY License.
eISSN 1854-1941