Določanje odzivnih genov in analiza genov, ki jih v promotorskih območjih riža (Oryza sativa L.) inducirajo bakterijski cis-regulatorni elementi

Abbas SAIDI, Zohreh HAJIBARAT, Zahra HAJIBARAT

Povzetek


Bakterijski ožig riža, ki ga povzroča vrsta Xanthomonas oryzae pv. oryzae (Xoo) je ena izmed najbolj kritičnih bolezni riža. Za preučevanje odzivnih genov pri rižu na bakterijski stres so bili pridobljeni podatkovni seti eksperimenta mikromrež iz podatkovne baze GEO. Za določanje odzivnih genov na bakterijski stres so bila uporabljena bioinformacijska orodja, katerih rezultati so bili predstavljeni v obliki barvnih vizualizacij, genske ontologije, genskega omrežja in napovedi cis-elementov. Skoraj pri večini odzivnih genov je bilo izražanje zavrto po približno 3 urah in aktivirano po približno 24 urah kot odziv na bakterijski stress pri sortah riža kot so Oryza sativa subspecies japonica ‘IR64’, ‘IRBB5’, ‘IRBB7’ in ‘Y73’. Genska ontologija je pokazala, da so ti geni vključeni v različne biološke procese, vključno s translacijo in presnovnimi procesi proteinov v celici. Analiza genskega omrežja je pokazala, da so geni, ki so se izrazili kot odziv na okužbo s patogenom (Xoo) vključevali translacijo proteinov, eukariontske iniciacijske faktorje (eIFs), ribosomalne proteine, protein ubikvitinin in MAPK gene. Geni, ki se izrazijo kot odziv na bakterijski stres omogočajo rastlini usklajevanje med sitezo in razgradnjo beljakovin, kar ji omogoča nadaljno rast in razvoj. Zaporedja nukleotidov kot so TATA in CAAT območja so imela največje število cis elementov povezanih z bakterijskim stresom. Ti geni lahko dajo nove vpoglede v regulatorne mehanizme pri odzivu riža na biotski stres. Identifikacija na bakterijski stres tolerantnih in odzivnih genov lahko pripomore pri molekularnem žlatnjenju novih sort riža, tolerantnih na bakterijski stres.


Ključne besede


riž; diferencialno izražanje genov (DEGs); bakterijski stres; genska ontologija; genske mreže

Celotno besedilo:

PDF (English)

Literatura


Agrawal, G.K., Rakwal, R. and Iwahashi, H. (2002). Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochemical and Biophysical Research Communications, 294(5), 1009-1016. https://doi.org/10.1016/S0006-291X(02)00571-5

Boycheva, I., Vassileva, V., Revalska, M., Zehirov, G. and Iantcheva, A. (2015). Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana. Research and Reports in Biology, 6, 117-130. https://doi.org/10.2147/RRB.S84753

Bolstad, B.M., Irizarry, R.A., Åstrand, M. and Speed, T.P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193. https://doi.org/10.1093/bioinformatics/19.2.185

Chen, X., Dong, Y., Yu, C., Fang, X., Deng, Z., Yan, C., & Chen, J. (2016). Analysis of the proteins secreted from the Oryza meyeriana suspension-cultured cells induced by Xanthomonas oryzae pv. oryzae. PloS One, 11(5). https://doi.org/10.1371/journal.pone.0154793

Dowd, C., Wilson, I.W. and McFadden, H. (2004). Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Molecular Plant-Microbe Interactions, 17(6), 654-667. https://doi.org/10.1094/MPMI.2004.17.6.654

Du, Z., Zhou, X., Ling, Y., Zhang, Z. and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic acids research, 38(suppl_2), W64-W70. https://doi.org/10.1093/nar/gkq310

Eisinger, D.P., Dick, F.A. and Trumpower, B.L. (1997). Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Molecular and Cellular Biology, 17(9), 5136-5145. https://doi.org/10.1128/MCB.17.9.5136

Eulgem, T. and Somssich, I.E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10(4), 366-371. https://doi.org/10.1016/j.pbi.2007.04.020

Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H. and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. The Plant Cell, 12(3), 393-404. https://doi.org/10.1105/tpc.12.3.393

Ghanashyam, C. and Jain, M. (2009). Role of auxin-responsive genes in biotic stress responses. Plant Signaling & Behavior, 4(9), 846-848. https://doi.org/10.4161/psb.4.9.9376

Gilmartin, P.M., Sarokin, L., Memelink, J. and Chua, N.H. (1990). Molecular light switches for plant genes. The Plant Cell, 2(5), 369. https://doi.org/10.2307/3869087

Grewal, R.K., Gupta, S. and Das, S. (2012). Xanthomonas oryzae pv oryzae triggers immediate transcriptomic modulations in rice. BMC Genomics, 13(1), 49. https://doi.org/10.1186/1471-2164-13-49

Hummel, M., Cordewener, J.H., de Groot, J.C., Smeekens, S., America, A.H. and Hanson, J. (2012). Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MS E proteomics. Proteomics, 12(7), 1024-1038. https://doi.org/10.1002/pmic.201100413

Jain, M. and Khurana, J.P. (2009). Transcript profiling reveals diverse roles of auxin‐responsive genes during reproductive development and abiotic stress in rice. The FEBS Journal, 276(11), 3148-3162. https://doi.org/10.1111/j.1742-4658.2009.07033.x

Kaur, A., Pati, P.K., Pati, A.M. and Nagpal, A.K. (2017). In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PloS One, 12(9), e0184523. https://doi.org/10.1371/journal.pone.0184523

Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D. and Bohnert, H.J. (2001). Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13(4), 889-905. https://doi.org/10.1105/tpc.13.4.889

Kolupaeva, V.G., Unbehaun, A., Lomakin, I.B., Hellen, C.U. and Pestova, T.V. (2005). Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. Rna, 11(4), 470-486. https://doi.org/10.1261/rna.7215305

Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., ... & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. https://doi.org/10.1093/nar/30.1.325

Li, Q., Chen, F., Sun, L., Zhang, Z., Yang, Y. and He, Z. (2006). Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray. Physiological and Molecular Plant Pathology, 68(1-3), 51-60. https://doi.org/10.1016/j.pmpp.2006.06.002

Lippok, B., Birkenbihl, R.P., Rivory, G., Brümmer, J., Schmelzer, E., Logemann, E. and Somssich, I.E. (2007). Expression of AtWRKY33 encoding a pathogen-or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Molecular Plant-Microbe Interactions, 20(4), 420-429. https://doi.org/10.1094/MPMI-20-4-0420

Moin, M., Bakshi, A., Saha, A., Dutta, M., Madhav, S.M. and Kirti, P.B. (2016). Rice ribosomal protein large subunit genes and their spatio-temporal and stress regulation. Frontiers in Plant Science, 7, 1284. https://doi.org/10.3389/fpls.2016.01284

Meena, K.K., Sorty, A.M., Bitla, U.M., Choudhary, K., Gupta, P., Pareek, A., Singh, D.P., Prabha, R., Sahu, P.K., Gupta, V.K. and Singh, H.B. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in Plant Science, 8, p.172. https://doi.org/10.3389/fpls.2017.00172

O’Brien, J.A. and Benková, E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science, 4, 451. https://doi.org/10.3389/fpls.2013.00451

Saidi, A., & Hajibarat, Z. (2018). In silico analysis of floral mads-box gene in Brachypodium distachyon. BIONATURE, 366-375.

Saidi, A., & Hajibarat, Z. (2019). Characterization of cis-elements in hormonal stress-responsive genes in Oryza sativa. https://doi.org/10.35118/apjmbb.2019.027.1.10

Saidi, A., & Hajibarat, Z. (2020). In-silico analysis of eukaryotic translation initiation factors (eIFs) in response to environmental stresses in rice (Oryza sativa). Biologia, 1-8. https://doi.org/10.2478/s11756-020-00467-1

Sharma, T.R., Rai, A.K., Gupta, S.K., Vijayan, J., Devanna, B.N. and Ray, S. (2012). Rice blast management through host-plant resistance: retrospect and prospects. Agricultural Research, 1(1), 37-52. https://doi.org/10.1007/s40003-011-0003-5

Song, R., Li, J., Xie, C., Jian, W., & Yang, X. (2020). An Overview of the Molecular Genetics of Plant Resistance to the Verticillium Wilt Pathogen Verticillium dahliae. International Journal of Molecular Sciences, 21(3), 1120. https://doi.org/10.3390/ijms21031120

Sormani, R., Masclaux-Daubresse, C., Daniele-Vedele, F. and Chardon, F. (2011). Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in Arabidopsis thaliana. PLoS One, 6(12), p.e28070. https://doi.org/10.1371/journal.pone.0028070

Toufighi, K., Brady, S. M., Austin, R., Ly, E., & Provart, N. J. (2005). The Botany Array Resource: e‐Northerns, expression angling, and promoter analyses. The Plant Journal, 43(1), 153-163. https://doi.org/10.1111/j.1365-313X.2005.02437.x

Ülker, B. and Somssich, I.E., 2004. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 7(5), 491-498. https://doi.org/10.1016/j.pbi.2004.07.012

Yang, L., Mu, X., Liu, C., Cai, J., Shi, K., Zhu, W., and Yang, Q. (2015). Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. Journal of Integrative Plant Biology, 57(12), 1078-1088. https://doi.org/10.1111/jipb.12348

Wang, W., Vinocur, B. and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. https://doi.org/10.1007/s00425-003-1105-5

Wang, P., Du, Y., Zhao, X., Miao, Y. and Song, C.P. (2013). The MPK6-ERF6-ROSE7/GCC-box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis thaliana. Plant Physiology, 112. https://doi.org/10.1104/pp.112.210724




DOI: http://dx.doi.org/10.14720/aas.2020.116.1.1035

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2020

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941