Kvarjenje koruznih zrn zaradi okužb z glivama Aspergillus flavus Link. in Fusarium verticillioides (Sacc.) Nirenberg

Francis Collins MUGA, Tilahun Seyoum WORKNEH, Moses Okoth MARENYA

Povzetek


V raziskavi so bile merjenje spremembe v kemični sestavi koruznih zrn zaradi okužbe z glivama Aspergillus flavus in Fusarium verticillioides. Vzorci koruznih zrn so bili inkubirani pri temperature 28 °C za 7, 14, 21, in 28 dni. V vzorcih je bila analizirana vsebnost mikotoksinov, vode, celukopnih beljakovin, maščob, vlaknin in pepela. Koruzna zrna, okužena z glivama A. flavus in F. verticillioides, so imela značilen upad celokupnih maščob. Kontaminacija z aflatoksinom B1 (AFB1) se je v koruznih zrnih povečala po inokulaciji z glivo A. flavus, s fumonizinom B1 (FB1) pa po inokulaciji z glivo F. verticillioides. Pri vsebnostih celokupnega pepela in vlaknin ni bilo nobenih sprememb. Čas inkubacije je značilno vplival na vsebnost AFB1 in FB1, vsebnost vode, celokupnih maščob in beljakovin. Kontaminacija z AFB1 in FB1 je bila značilno povezana z degradacijo celokupnih maščob. Testirani sevi so imeli podoben kvaren učinek na koruzna zrna. Značilne spremembe v zgradbi koruznih zrn so bile ugotovljene pri njihovi kontaminaciji z mikotoksini nad predpisano vrednostjo 10 µg kg−1, kar ni primerno za prehrano ljudi.

Ključne besede


aflatoksin; fumonizin; koruzna zrna; kemijska sestava; mikotoksin; vrste gliv

Celotno besedilo:

PDF (English)

Literatura


Abbas, H. K., Cartwright, R. D., Xie, W., & Shier, W. T. (2006). Aflatoxin and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop Protection, 25(1), 1-9. https://doi.org/10.1016/j.cropro.2005.02.009

AOAC. (2012). Official Methods of Analysis of AOAC International. Gaithersburg, USA: AOAC International.

Begum, M. A. J., Venudevan, B., & Jayanthi, M. (2013). Storage fungi in groundnut and the associate seed quality deterioration-A Review. Plant Pathology Journal, 12(3), 127-134. https://doi.org/10.3923/ppj.2013.127.134

Bhattacharya, K., & Raha, S. (2002). Deteriorative changes of maize, groundnut and soybean seeds by fungi in storage. Mycopathologia, 155(3), 135-141. https://doi.org/10.1023/A:1020475411125

de Kok, A., Spanjer, M., Scholten, J., Rensen, P., & Kearney, G. (2007). Rapid multi-mycotoxin analysis using ACQUITY UPLC and Quattro Premier XE. Retrieved from http://www.waters.com/waters/library.htm?locale=en_ZA&lid=1512802&cid=511436.

Embaby, E., & Abdel-Galil, M. (2006). Seed borne fungi and mycotoxins associated with some legume seeds in Egypt. Journal of Applied Sciences Research, 2(11), 1064-1071.

Fanelli, C., & Fabbri, A. (1989). Relationship between lipids and aflatoxin biosynthesis. Mycopathologia, 107(2-3), 115-120. https://doi.org/10.1007/BF00707547

Garcia, D., Barros, G., Chulze, S., Ramos, A. J., Sanchis, V., & Marín, S. (2012). Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. Journal of the Science of Food and Agriculture, 92(15), 2952-2959. https://doi.org/10.1002/jsfa.5707

Hruska, Z., Rajasekaran, K., Yao, H., Kinkaid, R., Darlington, D., Brown, R. L., Bhatnagar, D., & Cleveland, T. E. (2014). Co-inoculation of aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus to study fungal invasion, colonization, and competition in maize kernels. Frontiers in Microbiology, 5(3), 122. https://doi.org/10.3389/fmicb.2014.00122

Islam, M. (2016). Effect of biotic and abiotic factors on quality of black gram seed. Ph.D. thesis, Sher-e-Bangla Agricultural University, Bangladesh.

Jain, P. (2008). Microbial degradation of grains, oil seeds, textiles, wood, corrosion of metals and bioleaching of mineral ores. Retrieved from http://nsdl.niscair.res.in/jspui/bitstream/123456789/558/1/MicrobialDegradation.pdf

Kakde, R. B., & Chavan, A. M. (2011). Deteriorative changes in oilseeds due to storage fungi and efficacy of botanicals. Current Botany, 2(1), 17-22.

Kinderlerer, J. L. (1993). Fungal strategies for detoxification of medium chain fatty acids. International Biodeterioration & Biodegradation, 32(1-3), 213-224. https://doi.org/10.1016/0964-8305(93)90053-5

Liu, J., Sun, L., Zhang, N., Zhang, J., Guo, J., Li, C., Rajput, S. A., & Qi, D. (2016). Effects of nutrients in substrates of different grains on aflatoxin B1 production by Aspergillus flavus. BioMed Research International, 2016(2016), 1-10. https://doi.org/10.1155/2016/7232858

Ma, H., Zhang, N., Sun, L. & Qi, D. (2015). Effects of different substrates and oils on aflatoxin B1 production by Aspergillus parasiticus. European Food Research and Technology, 240(3), 627-634. https://doi.org/10.1007/s00217-014-2364-z

Magan, N., David, A., & Sanchis, V. (2004). The role of spoilage fungi in seed deterioration. In D. Aurora (Eds.), Fungal Biotechnology in Agricultural, Food and Environmental Application (pp. 311-333) New York, NY: Marcel Dekker. https://doi.org/10.1201/9780203913369.ch28

Mellon, J. E., Cotty, P.J., & Dowd, M. K. (2007). Aspergillus flavus hydrolases: their roles in pathogenesis and substrate utilization. Applied Microbiology and Biotechnology, 77(3), 497-504. https://doi.org/10.1007/s00253-007-1201-8

Mellon, J. E., Dowd, M. K., & Cotty, P. J. (2002). Time course study of substrate utilization by Aspergillus flavus in medium simulating corn (Zea mays) kernels. Journal of Agricultural and Food Chemistry, 50(3), 648-652. https://doi.org/10.1021/jf011048e

Mellon, J. E., Dowd, M. K., & Cotty, P. J. (2005). Substrate utilization by Aspergillus flavus in inoculated whole corn kernels and isolated tissues. Journal of Agricultural and Food Chemistry, 53(6), 2351-2357. https://doi.org/10.1021/jf040276g

Oyekale, K., Daniel, I., Ajala, M., & Sanni, L. (2012). Potential longevity of maize seeds under storage in humid tropical seed stores. Nature and Science, 10(8), 114-124.

Perrone, G., Haidukowski, M., Stea, G., Epifani, F., Bandyopadhyay, R., Leslie, J. F., & Logrieco, A. (2014). Population structure and Aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana. Food Microbiology, 41(1), 52-59. https://doi.org/10.1016/j.fm.2013.12.005

Pratiwi, C., Rahayu, W. P., Lioe, H. N., Herawati, D., Broto, W., & Ambarwati, S. (2015). The effect of temperature and relative humidity for Aspergillus flavus BIO 2237 growth and aflatoxin production on soybeans. International Food Research Journal, 22(1), 82.

Probst, C., Bandyopadhyay, R., & Cotty, P. (2014). Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa. International Journal of Food Microbiology, 174(1), 113-122. https://doi.org/10.1016/j.ijfoodmicro.2013.12.010

Reed, C., Doyungan, S., Ioerger, B., & Getchell, A. (2007). Response of storage molds to different initial moisture contents of maize (corn) stored at 25 C, and effect on respiration rate and nutrient composition. Journal of Stored Products Research, 43(4), 443-458. https://doi.org/10.1016/j.jspr.2006.12.006

Rheeder, J., Shephard, G., Vismer, H., & Gelderblom, W. (2009). Guidelines on mycotoxin control in South African foodstuffs: from the application of the hazard analysis and critical control point (HACCP) system to new national mycotoxin regulations (Medical Research Council Policy Brief). Retrieved from http://www.mrc.ac/policybriefs/mycotoxinguidelines.

Wilson, R. A., Calvo, A. M., Chang, P. K., & Keller, N. P. (2004). Characterization of the Aspergillus parasiticus Δ12-desaturase gene: a role for lipid metabolism in the Aspergillus-seed interaction. Microbiology, 150(9), 2881-2888. https://doi.org/10.1099/mic.0.27207-0




DOI: http://dx.doi.org/10.14720/aas.2019.114.1.8

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2019

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941