Nanodelci titanovega dioksida zmanjšujejo strupenost kadmija pri kalečih semenih leče (Lens culinaris Medic)

Hassan FEIZI, Nafiseh AGHELI, Hossein SAHABI

Povzetek


Namen raziskave je bil preučiti učinke različnih koncentracij nanodelcev titanovega dioksida in kadmija na kalitev semen leče in zgodnjo rast njenih sejank. Poskus je bil izveden kot popolni naključni faktorski poskus s štirimi ponovitvami. Testirane rastline so bile izpostavljene 0, 100, 250 in 500 ppm kadmija, s kasnejšim dodatkom 0, 100, 200 in 300 ppm nanodelcev TiO2. Rezultati so pokazali, da je dodatek 300 ppm nanodelcev titanovega dioksida izboljšal poprečni čas kalitve (MGT) za 39 % in hitrost kalitve za 62 %. Večina merjenih znakov je pokazala padajoč trend s povečevanjem koncentracije kadmija. Uporaba 500 ppm koncentracije kadmija je povečala poprečni čas kalitve za 1,667 dni v primerjavi s kontrolo. Zaključimo lahko, da je pri leči uporaba nanodelcev titanovega dioksida odpravila učinke stresa velikih koncentracij kadmija in ohranila dolžino poganjkov primerljivo s kontrolo. Vsekakor pa so potrebne še nadaljne raziskave življenskega kroga rastlin za ugotavljanje inhibitornih učinkov titanovega dioksida na toksičnost težkih kovin.

Ključne besede


težke kovine; kadmij; kalitev; nanodelci

Celotno besedilo:

PDF (English)

Literatura


Agheli, N., Aliakbarkhani, Z., Behnam, A., Feizi, H. (2016). Stimulation of silybum seed germination and seedling growth by TiO2 nanoparticles and magnetic field. First National Conference on Medicinal Plants, University of Gonbad Kavus, Iran. (In Persian).

Ahmadvand, S., Bahmani, R. Habibi, D., Forozesh, P. (2012). Study on the effect of cadmium chloride on growth parameters and some physiological traits in bean seedlings. Plant Breeding and Agronomy Journal. 8, 165-182 (In Persian with English Abstract).

Ahsan, N., Lee, D.G., Lee, S.H., Kang, K.Y., Lee, J.J., Kim, P.J., Yoon, H.S., and Lee, H.B. (2007). Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere. 67(6), 1182–1193. https://doi.org/10.1016/j.chemosphere.2006.10.075

Carvalhoa M. E.A., Castro, P. RC., Azevedo, R. A. (2020). Hormesis in plants under Cd exposure: From toxic to beneficial element? Journal of Hazardous Materials. Volume 384 https://doi.org/10.1016/j.jhazmat.2019.121434

Chen, J., Qian, Y., Li, H., Cheng, Y., Zhao, M., (2015). The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa. Environmental Science Pollution Research, 22, 12407–12414. https://doi.org/10.1007/s11356-015-4492-9

Deng, R., Lin, D., Zhu, L., Majumdar, S., White, J.C., Gardea-Torresdey, J.L., Xing, B. (2017). Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology. 11(5), 591-612. https://doi.org/10.1080/17435390.2017.1343404

Dolatabadi, A., Sani, B., and Moaveni P. (2015). Impact of nanosized titanium dioxide on agronomical and physiological characteristics of annual medic (Medicago scutellata L.). Cercetări Agronomice în Moldova, 48, 53-61. https://doi.org/10.1515/cerce-2015-0041

Engates, K.E., Shipley, H.J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environmental Science Pollution Research, 18, 386–395. https://doi.org/10.1007/s11356-010-0382-3

Feizi, H. abd Rezvani Moghaddam, P. (2011). Influence of magnetic field and silver nanoparticles in comparison to macro and micro nutrient fertilizers on growth, yield and silage quality of maize. Journal of Water and Soil, 24, 1062-1072. (In Persian with English Abstract).

Feizi, H. (2012). The role of metallic nanoparticles (TiO2, Fe2O3) and magnetic field on germination, nutrient absorption, growth and quantitative and qualitative characteristics of wheat. PhD. Thesis. Ferdowsi University of Mashhad, Iran. (In Persian with English Abstract).

Feizi, H., Kamali, M., Jafari, L. & Rezvani Moghaddam, P. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 91, 506–511. https://doi.org/10.1016/j.chemosphere.2012.12.012

Houshmandfar, A., and Moraghebi, F. (2011). Effect of mixed cadmium, copper, nickel and zinc on seed germination and seedling growth of safflower. African Journal of Agricultural Research, 6(5), 1182-1187.

Hussain, S.S., Ali, M., Ahmad, M., and Siddique, K.H.M. (2011). Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29(3), 300-311. https://doi.org/10.1016/j.biotechadv.2011.01.003

ISTA. (2009). ISTA Rules. International Seed Testing Association. Zurich, Switzerland. 47 pp.

Mahmood, S., Hussain, A., Zaeed, Z., and Athar, M. (2005). Germination and seedling growth of corn (Zea mays L.) under varying levels of copper and zinc. International Journal of Environmental Science Technology, 2(3), 269-274. https://doi.org/10.1007/BF03325886

Maguire, I. D. (1982). Speed of germination – Aid in selection and evaluation for seedling emergence and vigor. Crop Science, 22, 177–176. https://doi.org/10.2135/cropsci1962.0011183X000200020033x

Miao, W., Zhu, B., Xiao, X., Li, Y., Dirbaba, N.B., Zhou, B., Wu, H. (2015). Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquatic Toxicology, 161, 117-26. https://doi.org/10.1016/j.aquatox.2015.02.002

Moaveni, P., Talebi, R., Farahani, H.A. and Maroufi, K. (2011). Effect of TiO2 nanoparticles spraying on barley (Hordem vulgare L.) under field condition. Advances Environmental Biology, 5(7), 1663-1667.

Motesharezade, B., Aghaee, L., Savaghebi, G. (2014). Influence of Cd and Pb application on their absorption and growth of two bean cultivars. Environmental Stress in Crop Science, 7, 257-271. (In Persian with English Abstract).

Pais, I. (1983). The biological importance of titanium. Journal of Plant Nutrition, 6, 3-131. https://doi.org/10.1080/01904168309363075

Parmoon, G., Ebadi, A., Ghaviazm A., and Miri, M. (2013). Effect of seed priming on germination and seedling growth of Chamomile under salinity. EJCP, 6(3), 145-164. (In Persian with English Abstract).

Parmoon, G. Ebadi, E. Ghahremani, M. Moosavi, S.A. (2014). Influence of heavy metal on seed germination and vigor of maize in control condition. Journal of Seed Research, 4, 40-51. (In Persian with English Abstract).

Shafiq M., Iqbal, M.Z. and Athar M. (2008). Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. Journal of Science Environmental Management, 12(2), 61- 66.

Soltani, M., Moaveni, P. Noori H. (2014). Investigation of foliar application effect of TiO2 nanoparticles on yield and yield component of lentil. Iranian Journal Plant Ecophysiology Research, 9, 78-88. (In Persian with English Abstract).

Tan, C., Wang, W.X., (2014). Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environmental Pollution, 186, 36–42. https://doi.org/10.1016/j.envpol.2013.11.015

Vashisth, A., and Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seed exposed to static magnetic field. Journal of Plant Physiology, 167, 149-156.

Vassilev, A. (2003). Barley seedlings as bio-indicators for water contamination by cadmium. Journal of Environmental Protection and Ecology, 4(2), 354-360. https://doi.org/10.1016/j.jplph.2009.08.011

Zhi-Xin, N., Li-na, S., Tie-heng, S., Yu-shuang L., and Hong, W. (2007). Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Environmental Sciences, 19, 961-967. https://doi.org/10.1016/S1001-0742(07)60158-2




DOI: http://dx.doi.org/10.14720/aas.2020.116.1.1116

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2020

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941