Salicilna kislina in kalijev nitrat pospešujeta cvetenje stranskih poganjkov dateljeve palme (Phoenix dactylifera ‘Sayer’) z moduliranjem ravni hormonov in vzorca proteinov

Hussein Jasim SHAREEF

Povzetek


Salicilna kislina pospešuje cvetenje preko tvorbe novih proteinov v razmerah slanostnega stresa. Namen raziskave je bil določiti vlogo salicilne kisline (500 ppm) in kalijevega nitrata (1500 ppm) na cvetenje stranskih poganjkov dateljeve palme (‘Sayer’) v razmerah slanosti. Uporaba salicilne kisline je značilno povečala število stranskih poganjkov, število novih listov, vsebnost ogljikovih hidratov, askorbinske kisline, indolocetne kisline, zeatina, giberelina in abscizinske kisline v razmerah slanosti v primerjavi s kontrolo. Čeprav so imeli vsi merjeni parametri največje vrednosti pri obravnavanju s salicilno kislino, ni bilo razlike v obravnavanjih s kalijevim nitratom in salicilno kislino v istih razmerah. Obravnavanja s salicilno kislino in kalijevim nitratom so imela velike razlike v vzorcu proteinov, določenem z gelsko elektroforezo. Rastline, ki so bile tretirane s salicilno kislino, sladko in slano vodo so imele pet oziroma šest proteinskih trakov, ki so se razlikovali v molekulski masi enega izmed polipeptidov v primerjavi s kontrolo, kjer je bilo samo obravnavanje s sladko vodo. Kakorkoli, v primerjavi s kontrolo, kjer je bilo obravnavanje samo s slano vodo in je bilo šest proteinskih trakov, je bila razlika v molekulski masi dveh polipeptidov. Obravnavanje samo s kalijevim nitratom je pokazalo samo pet proteinov, ne glede na obravnavanje s slano ali sladko vodo. Ti izsledki bi lahko pomagali razjasniti mehanizem cvetenja pri dateljevi palmi.

Ključne besede


abscizinska kislina; število poganjkov; zeatin; elektroforeza; giberelin; indolocetna kislina

Celotno besedilo:

PDF (English)

Literatura


Akram, N.A., Shafiq, F. & Ashraf, M. (2017). Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. Frontiers in Plant Science, 8, 1-17. https://doi.org/10.3389/fpls.2017.00613

Al-Mayahi, Ahmed M. W. (2016). Influence of salicylic acid (SA) and ascorbic acid (ASA) on in vitro propagation and salt tolerance of date palm (Phoenix dactylifera 'Nersy'). Australian Journal of Crop Science, 10(7), 969–976. https://doi.org/10.21475/ajcs.2016.10.07.p7640

Allbed, A., Kumar, L., & Shabani, F. (2017). Climate change impacts on date palm cultivation in Saudi Arabia. Journal of Agricultural Science, 155(8), 1203–1218. https://doi.org/10.1017/S0021859617000260

Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J. A., Nicolás, G., López-Climent, M., & Nicolás, C. (2009). Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Signaling and Behavior, 4(8), 750–751. https://doi.org/10.4161/psb.4.8.9175

Amirbakhtiar, N., Ismaili, A., Ghaffari, M.R., Firouzabadi, F.N. & Shobbar, Z.S. (2019). Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. Plant Physiology, 177, 475-489. https://doi.org/10.1371/journal.pone.0213305

Anwar, A., Liu, Y., Dong, R., Bai, L., Yu, X. & Li, Y. (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: A review. Biological Research, 51, 1–15. https://doi.org/10.1186/s40659-018-0195-2

Appu, M., & Muthukrishnan, S. (2014). Foliar Application of Salicylic Acid Stimulates Flowering and Induce Defense Related Proteins in Finger Millet Plants. Universal Journal of Plant Science, 2(1), 14–18. https://doi.org/10.13189/ujps.2014.020102

Blazquez, M. A. (1998). Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter. The Plant Cell Online, 10(5), 791–800. https://doi.org/10.1105/tpc.10.5.791

Cheruth, A. J., Kurup, S. S., & Subramaniam, S. (2015). Variations in Hormones and Antioxidant Status in Relation to Flowering in Early, Mid, and Late Varieties of Date Palm (Phoenix dactylifera) of United Arab Emirates. The Scientific World Journal, 1, 1–8. https://doi.org/10.1155/2015/846104

Costa, S.F., Martins, D., Agacka-mo, M., Czubacka, A. & Araújo, S.D.S. (2018). Strategies to Alleviate Salinity Stress in Plants. In V. Kumar et al. (eds.) Salinity Responses and Tolerance in Plants. pp. 307–337. https://doi.org/10.1007/978-3-319-75671-4

Desoky, E.S.M. & Merwad, A.R.M. (2015). Improving the Salinity Tolerance in Wheat Plants Using Salicylic and Ascorbic Acids. Journal of Agricultural Science, 7, 203–217. https://doi.org/10.5539/jas.v7n10p203

Dierck, R. (2016). Shoot branching: analysis of axillary bud outgrowth in Chrysanthemum morifolium. Ph.D. Thesis, Ghent University, Gent, Belgium pp,165.

Duncan, D.R., Phillips, G.C., Thorpe, T.A. & Dai, W. (2018). Cellular & Developmental Biology. Springer, pp. 135.

Elsadig, E.H., Aljuburi, H.J., Elamin, A.H.B. & Gafar, M.O. (2017). Impact of organic manure and combination of N P K S, on yield, fruit quality and fruit mineral content of Khenazi date palm (Phoenix dactylifera L.) cultivar. Journal of Scientific Agriculture, 1, 335. https://doi.org/10.25081/jsa.2017.v1.848

Fahraji, S.S., Kheradmand, M.A. & Mahdi, M. (2014). Effect of Salicylic acid on germination, leaf area, Shoot and root growth in crop plants. International Research Journal of Applied and Basic Sciences, 8, 1454–1458. https://doi.org/10.1007/978-3-319-14714-7_10

Farooq, M., Hussain, M., Wakeel, A. & Siddique, K.H.M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461–481. https://doi.org/10.1007/s13593-015-0287-0

Khayyat, M., Jabbari, M., Fallahi, H.R. & Samadzadeh, A. ( 2018). Effects of corm dipping in salicylic acid or potassium nitrate on growth, flowering, and quality of saffron. Journal of Horticultural Research, 26, 13–21. https://doi.org/10.2478/johr-2018-0002

Laemmli UK. (1970). Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature, 227, 680–685. https://doi.org/10.1038/227680a0

Lakudzala, D. D. (2013). Potassium Response in some Malawi Soils. International Letters of Chemistry, Physics and Astronomy, 13(2), 175–181. https://doi.org/10.18052/www.scipress.com/ILCPA.13.175

Luwe, M.W.F., Takahama, U. & Heber, U. (1993). Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiology, 101, 969–976. https://doi.org/10.1104/pp.101.3.969

Lymperopoulos, P., Msanne, J. & Rabara, R. (2018). Phytochrome and Phytohormones: Working in Tandem for Plant Growth and Development. Frontiers in Plant Science, 9, 1–14. https://doi.org/10.3389/fpls.2018.01037

Moustafa A.R.A., Abdel-Hamid N.A., Abd El-Hamid A.A., El-Sonbaty, S.M.R. & Abd El-Naby, S.K.M. (2018). Improving fruit set, yield and fruit quality of khadrawi date palm cultivar. Arab Universities Journal of Agricultural Sciences, 26, 1461–1469. https://doi.org/10.21608/ajs.2018.34126

Razavizadeh, R. (2015). Protein pattern of canola (Brassica napus L.) changes in response to salt and salicylic acid in vitro. Biological Letters, 52(1–2), 19–36. https://doi.org/10.1515/biolet-2015-0012

Safar-Noori, M., Assaha, D. V. M. & Saneoka, H. (2018). Effect of salicylic acid and potassium application on yield and grain nutritional quality of wheat under drought stress condition. Cereal Research Communications, 46(3), 558568.https://doi.org/10.1556/0806.46.2018.026

Shareef H. J., Jasim, A. M. & Abass, M. F. (2017). Molecular Analysis of Anti-salinity Compounds on Date Palm offshoots (Phoenix dactylifera L.) cultivars using RAPD. Journal of Environmental Science, 6(February), 061–071.

Shareef, H. J. (2016). Enhancing Fruit Set and Productivity in Date Palm (Phoenix Dactylifera L.) Berhi Cultivar Using Boron and Potassium. Journal of Environmental Science, 5, 108–114.

Sytar, O., Kumari, P., Yadav, S., Brestic, M. & Rastogi, A. (2019). Phytohormone Priming: Regulator for Heavy Metal Stress in Plants. Journal of Plant Growth Regulation, 38, 739–752. https://doi.org/10.1007/s00344-018-9886-8

Tamaoki, D., Seo, S., Yamada, S., Kano, A., Miyamoto, A., Shishido, H., Miyoshi, S., Taniguchi, S., Akimitsu, K. & Gomi, K. (2013). Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signaling & Behavior, 8, 8–10. https://doi.org/10.4161/psb.24260

Waadt, R., Hsu, P.K. & Schroeder, J.I. (2015). Abscisic acid and other plant hormones: Methods to visualize distribution and signaling. BioEssays, 37, 1338–1349. https://doi.org/10.1002/bies.201500115

Wada K. C. & Takeno K. (2013). Salicylic Acid-Mediated Stress-Induced Flowering. In Hayat, S., Ahmad, A., & Alyemeni, M.N. (eds.), Salicylic Acid (pp. 163-182) Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_9

Yan, F., Zhou, H., Yue, M., Yang, G., Li, H., Zhang, S. & Zhao, P. (2019). Genome-wide identification and transcriptional expression profiles of the f-box gene family in common walnut (Juglans regia L.). Forests, 10, 1–20. https://doi.org/10.3390/f10030275

Yemm, E.W., & Willis, A.J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57, 508–514. https://doi.org/10.1042/bj0570508

Zhang, Y., Lv, Y., Jahan, N., Chen, G., Ren, D. & Guo, L. (2018a). Sensing of abiotic stress and ionic stress responses in plants. International Journal of Molecular Sciences, 19, 1–16. https://doi.org/10.3390/ijms19113298

Zhang, Z., Zhuo, X., Zhao, K., Zheng, T., Han, Y., Yuan, C. & Zhang, Q. (2018b). Transcriptome Profiles Reveal the Crucial Roles of Hormone and Sugar in the Bud Dormancy of Prunus mume. Scientific Reports, 8, 1–15. https://doi.org/10.1038/s41598-018-23108-9




DOI: http://dx.doi.org/10.14720/aas.2019.114.2.8

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2019

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941