Izboljšanje pridelka žafranike in njegove stabilnosti z multivariatnimi parametričnimi in neparametričnimi metodami pri različnem namakanju in datumih setve

Pooran GOLKAR, Nasrin RAHMATABADI, Seyyed Ali Mohammad MIRMOHAMMADY MAIBODY

Povzetek


Razvoj superiornih genotipov z veliko prilagodljivostjo različnim okoljem je eden izmed najvažnejših ciljev v žlahniteljskih programih žafranike. V raziskavi je bilo uporabljenih deset parametričnih in šest neparametričnih meril vključno z glavnimi aditivnimi učinki in modelom pomembnih multiplikativnih interakcij (AMMI) za ovrednotenje interakcije genotipa z okoljem (GE) pri 15 genotipih žafranike, preiskušenih v 12 okoljih )kombinacija leta poskusa, datuma setve in vlažnostnih razmer) v rastnih sezonah 2016 in 2017. AMMI analiza je odkrila značilne razlike v interakcijah genotipov z okoljem. Različne statistične metode za ovrednotenje različnih vidikov stabilnosti pridelka so bile uspešno nadomeščene s koeficientom gradualne korelacije. Ti koeficienti so odkrili pozitivne in značilne korelacije med poprečnim pridelkom semena in indeksom superiornosti (r = 0.99**), in značilne negativne korelacije z bi, R2, Dij in neparametričnimi merili (NPi(2), NPi(3) in NPi(4)). Na osnovi večine parametrov stabilnosti je bil genotip Mex.295 ,(G10) prepoznan kot najbolj stabilen za pridelek semena. Genotip IL.111 (G9) je bil prepoznan kot najboljši genotip žafranike z največjim poprečnim pridelkom. Zaključimo lahko, da je v žlahtniteljskih programih žafranike potrebno hkrati upoštevati velikost in stabilnost pridelka, če hočemo izkoristiti koristne interakcije okolja in genotipa (G × E).

Ključne besede


žafranika; parametrična in ne-parametrična merila; pridelek; korelacija rangov

Celotno besedilo:

PDF (English)

Literatura


Abdulahi, A., Pourdad, S.S. & Mohammadi, R. (2009). Stability analysis of seed yield in safflower genotypes in Iran. Acta Agronomica Hungarica, 57(2), 185-195. https://doi.org/10.1556/AAgr.57.2009.2.10

Annicchiarico, P. (2002). Defining adaptation strategies and yield-stability targets in breeding programmes. In: Kang MS (ed) Quantitative genetics, genomics, and plant breeding. CABI, Wallingford, pp. 365-383. https://doi.org/10.1079/9780851996011.0365

Becker, H.C. & Leon, J. (1988). Stability analysis in plant breeding. Plant Breeding, 101, 1-23. https://doi.org/10.1111/j.1439-0523.1988.tb00261.x

Caliskan, S. & Caliskan, M.E. (2018). Row and plant spacing effects on the yield and yield components of safflower in a mediterranean-type environment. Turkish Journal of Field Crops, 23(2), 85-92. https://doi.org/10.17557/tjfc.467442

Clarke, T.C., Parkin, G.W. & Ferre, T.P.A. (2008). Soil water content. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis. CRC Press, Boca Raton, FL: Canadian Society of Soil Science, pp. 939-961.

Dajue, L.& Mundel, H.H. (1996). Safflower (Carthamus tinctorius L.) Promoting the Conservation and Use of Underutilized and Neglected Crops 7. Gatersleben; Rome: Institute of Plant Genetics and Crop Plant Research; International Plant Genetic Resources Institute.

Dehghani, M.R., Majidi, M.M., Mirlohi, A. & Saeidi, G.H. (2016). Integrating parametric and non-parametric measures to investigate genotype× environment interactions in tall fescue. Euphytica, 208(3), 583-596. https://doi.org/10.1007/s10681-015-1611-0

Ebdon, J.S. & Gauch, H.G.Jr. (2002). Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype × environment interaction. Crop Science, 42, 489- 496. https://doi.org/10.2135/cropsci2002.4890

Eberhart, S.A.T. & Russell, W.A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x

Ebrahimi, F., Majidi, M.M., Arzani, A. & Mohammadi-Nejad, G. (2016). Oil and seed yield stability in a worldwide collection of safflower under arid environments of Iran. Euphytica, 212(1), 131-144. https://doi.org/10.1007/s10681-016-1779-y

Farshadfar, E., Sabaghpour, S.H. & Zali, H, (2012). Comparison of parametric and non-parametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. Australian Journal of Crop Science, 6(3), 514.

Farooq, M., Hussain, M., Wahid, A. & Siddique, K.H.M. (2012). Drought stress in plants: an overview. In: Plant responses to drought stress (pp. 1-33). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_1

Francis, T.R. & Kannenberg, L.W. (1978). Yield stability studied in short-season maize. I. A descriptive method for grouping genotypes. Canadian Journal of Plant Sciences, 58, 1029-1034. https://doi.org/10.4141/cjps78-157

Gauch, H.G. & Zobel, R.W. (1996). AMMI analyses of yield trials. In: Genotype by Environment Interaction. Kang M. S. and Gauch H. G. (eds.). CRC. Boca Raton, Florida, pp. 85-122. https://doi.org/10.1201/9781420049374.ch4

Gauch, H.G (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46, 1488-1500. https://doi.org/10.2135/cropsci2005.07-0193

Golkar, P. (2014). Breeding improvements in safflower (Carthamus tinctorius L.): A review. Australian Journal of Crop Science, 8(7), 1079-1085.

Huehn, M. (1996). Nonparametric analysis of genotype x environment interactions by ranks. Genotype by Environ Interact CRC Press, Boca Raton, FL, pp 213-228. https://doi.org/10.1201/9781420049374.ch9

Hussain, M.I., Lyra, D.A., Farooq, M., Nikoloudakis & N., Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36(1), 4. https://doi.org/10.1007/s13593-015-0344-8

Moghaddam, M.J. & Pourdad, S.S. (2009). Comparison of parametric and non-parametric methods for analysing genotype× environment interactions in safflower (Carthamus tinctorius L.). Journal of Agricultural Sciences, 147(5), 601-612. https://doi.org/10.1017/S0021859609990050

Kar, G., Kumar, A., Martha, M. (2007). Water use efficiency and crop coefficients of dry season oilseed crops. Agricultural Water Management, 87(1), 73-82. https://doi.org/10.1016/j.agwat.2006.06.002

Khalili, M. & Pour-Aboughadareh, A. (2016). Parametric and nonparametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. Journal of Agricultural Science and Technology, 18, 789-803.

Knowles, P.F. (1969). Centers of plant diversity and conservation of crop germplasm: safflower. Economic Botany, 23, 324-329. https://doi.org/10.1007/BF02860678

Kruskal, W.H. & Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. Journal of American Statistical Association, 47(260), 583-621. https://doi.org/10.1080/01621459.1952.10483441

Kumar, S., Ambreen, H., Variath, M.T., Rao, A.R., Agarwal, M., Kumar, …, Jagannath, A. (2016). Utilization of molecular, phenotypic, and geographical diversity to develop compact composite core collection in the oilseed crop, safflower (Carthamus tinctorius L.) through maximization strategy. Frontiers in Plant Science, 7, 1554. https://doi.org/10.3389/fpls.2016.01554

Lin, C.S. & Binns, M.R. (1988). A method of analyzing cultivar × location × year experiments: A new stability parameter. Theoretical and Applied Genetics, 76, 425-430. https://doi.org/10.1007/BF00265344

Mohammadi, R., Abdulahi, A., Haghparast, R., Armion, M. (2007). Interpreting genotype× environment interactions for durum wheat grain yields using nonparametric methods. Euphytica, 157(1-2), 239-251. https://doi.org/10.1007/s10681-007-9417-3

Mohebodini, M., Dehghani & H. Sabaghpour, S.H. (2006). Stability of performance in lentil (Lens culinaris Medik) genotypes in Iran. Euphytica, 149(3), 343-352. https://doi.org/10.1007/s10681-006-9086-7

Nassar, R. & Huehn, M. (1987). Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics, 43, 45-53. https://doi.org/10.2307/2531947

Omidi Tabrizi, A.H. (2006). Stability and adaptability estimates of some safflower cultivars and lines in different environmental conditions. Agriculture and Science Technology, 8,141-151.

Pacheco, A., Vargas, M., Alvarado, G., Rodriguez, F., Crossa, J. & Burgueno, J. (2015). “GEA-R (Genotype x Environment Analysis with R for Windows) Version 4.1”, hdl: 11529/10203, CIMMYT Research Data & Software Repository Network, V16.

Perkins, J.M. & Jinks, J.L. (1968). Environmental and genotype environmental components of variability. Heredity, 23, 523- 535. https://doi.org/10.1038/hdy.1968.71

Pinthus, J.M. (1973). Estimate of genotype value: A proposed method. Euphytica, 22, 21-123. https://doi.org/10.1007/BF00021563

Pourdad S.S. & Mohammadi, R. (2008). Use of stability parameters for comparing safflower genotypes in multi environment trials. Asian Journal of Plant Science, 7(1), 100-104. https://doi.org/10.3923/ajps.2008.100.104

Purchase, J.L., Hatting, H. & Van Deventer, C.S. (2000). Genotype × environment interaction of winter wheat in South Africa: II. stability analysis of yield performance. South African Journal of Plant and Soil, 17(3), 101-107. https://doi.org/10.1080/02571862.2000.10634878

Sabaghnia, N., Dehghani, H. & Sabaghpour, S.H. (2006). Nonparametric methods for interpreting genotype 9 environment interaction of lentil genotypes. Crop Science, 46, 1100-1106. https://doi.org/10.2135/cropsci2005.06-0122

Sayyah, S.S., Ghobadi, M., Mansoorifar, S. & Zebarjadi, A.R. (2015). The yield of wheat genotypes associated with yield components under irrigated and drought stress after anthesis. Archives of Agronomy and Soil Science, 61(12), 1743-1755. https://doi.org/10.1080/03650340.2014.1001751

Shukla, G.K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29, 237-245. https://doi.org/10.1038/hdy.1972.87

Steel, R.G.D. & Torrie, J.H. (1980). Principles and procedures of statistics, a Biometrical Approach. 2nd edition. McGraw-Hill, New York, 633 pp.

Thennarasu, K. (1995). On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Ph.D. Thesis. P. J. School, IARI, New Delhi.

Wricke, G. (1962). Uber eine Methode zur Erfassung der okologischen Streubreite in Feldversuchen. Zeitschrift Fur Pflanzenzuchtung-J. Plant Breeding, 47, 92-96.




DOI: http://dx.doi.org/10.14720/aas.2020.115.2.1257

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2020

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941