Vezane fenolne spojine polnozrnatih žitnih pripravkov kot sestavina funkcionalnih živil: prvi del
Povzetek
številne presnovne bolezni sodobnega časa so povezane z neuravnoteženo energijsko bogato prehrano, ki je osiromašena s prehransko vlaknino in drugimi zaščitnimi bioaktivnimi snovmi. Glede na omejen uspeh terapevtskih posegov za zdravljenje debelosti in presnovnega sindroma se je povečalo zanimanje za druge možnosti. V prvem delu se osredotočamo na pomen polnozrnatih žit v prehrani, spoznamo ključne bioaktivne komponente žit in njihovo razporeditev znotraj zrna. Izvemo, da otrobi, stranski proizvod žitno predelovalne industrije, predstavljajo neizkoriščen vir fenolnih spojin. Biosinteza slednjih poteka na endoplazmatskem retikulumu in v plastidih od koder se prenesejo do drugih organelov znotraj celice. Deaminiranje, hidroksiliranje in metiliranje so osrednje reakcije nastanka hidroksibenzojskih in hidroksicimetnih kislin. Poseben poudarek namenjamo fenolnim spojinam, ki ostanejo v trdnem ostanku po solventni ekstrakciji z vodnimi raztopinami organskih topil. Te neekstraktibilne fenolne spojine, ki so kovalentno vezane na celično steno, so v tovrstnih raziskavah pogosto prezrte in posledično je vsebnost bioaktivnih snovi v žitih nemalokrat podcenjena. Ferulna kislina, kot najpomembnejši predstavnik, je in vitro poznana po zaviranju bolezni, ki so posledica oksidativnega stresa – preprečuje razna rakava obolenja, srčno-žilne in nevrodegenerativne bolezni. Vezane fenolne spojine se ne razgradijo v prebavnem traktu, kot različni metaboliti se absorbirajo v krvni obtok šele po fermentaciji s pomočjo črevesne mikroflore. Zadostnemu uživanju vezanih fenolnih spojin pripisujemo izboljšano antioksidativno in protivnetno delovanje, številni dokazi pa kažejo na njihovo preventivno vlogo pri razvoju črevesnih bolezni.
Ključne besede
Celotno besedilo:
PDFLiteratura
Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55. https://doi.org/10.1016/j.foodchem.2013.11.093
Adom, K. K. & Liu, R. H. (2002). Antioxidant Activity of Grains. Journal of Agricultural and Food Chemistry, 50(21), 6182-6187. https://doi.org/10.1021/jf0205099
Alvarez-Jubete, L., Arendt, E. K., Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21(2), 106-113. https://doi.org/10.1016/j.tifs.2009.10.014
Arendt, E. K. & Zannini, E. (2013). Cereals grains for the food and beverage industries. Cambridge, Woodhead Publishing Ltd.
Aura, A.-M. 2008. Microbial metabolism of dietary phenolic compounds in the colon. Phytochemistry Reviews, 7(3), 407-429. https://doi.org/10.1007/s11101-008-9095-3
Belobrajdic, D. P. & Bird, A. R. (2013). The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutrition Journal, 12(1), 62. https://doi.org/10.1186/1475-2891-12-62
Borneo, R., León, A. E. (2012). Whole grain cereals: functional components and health benefits. Food & Function, 3(2), 110-119. https://doi.org/10.1039/c1fo10165j
Boz, H. (2015). Ferulic Acid in Cereals -- a Review. Czech Journal of Food Science, 33(1), 1-7. https://doi.org/10.17221/401/2014-cjfs
Brouns, F. J. P. H., van Buul, V. J., Shewry, P. R. (2013). Does wheat make us fat and sick? Journal of Cereal Science, 58(2), 209-215. https://doi.org/10.1016/j.jcs.2013.06.002
Călinoiu, F. L., Vodnar, C. D. (2018). Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients, 10(11). https://doi.org/10.3390/nu10111615
de Oliveira, D. M., Finger-Teixeira, A., Rodrigues Mota, T., Salvado,r V. H., Moreira-Vilar, F. C., Correa Molinari, H. B., Craig Mitchell, R. A., Marchiosi, R., Ferrarese-Filho, O., Dantas dos Santos, W. (2015). Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 13(9), 1224-1232. https://doi.org/10.1111/pbi.12292
de Oliveira Silva, E. & Batista, R. (2017). Ferulic Acid and Naturally Occurring Compounds Bearing a Feruloyl Moiety: A Review on Their Structures, Occurrence, and Potential Health Benefits. Comprehensive Reviews in Food Science and Food Safety, 16(4), 580-616. https://doi.org/10.1111/1541-4337.12266
Drewnowski A., Gomez-Carneros C. (2000). Bitter taste, phytonutrients, and the consumer: a review. The American Journal of Clinical Nutrition, 72(6), 1424-1435. https://doi.org/10.1093/ajcn/72.6.1424
Espín, J. C., González-Sarrías, A., Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical Pharmacology, 139, 82-93. https://doi.org/10.1016/j.bcp.2017.04.033
Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews, 23(1), 65-134. https://doi.org/10.1017/s0954422410000041
Fraś A., Gołębiewska K., Gołębiewski D., Mańkowski D. R., Boros D., Szecówka P. 2016. Variability in the chemical composition of triticale grain, flour and bread. Journal of Cereal Science, 71, 66-72. https://doi.org/10.1016/j.jcs.2016.06.016
Gänzle, M. G. (2014). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2-10. https://doi.org/10.1016/j.fm.2013.04.007
Gong, L., Cao, W., Chi, H., Wang, J., Zhang, H., Liu, J., Sun, B. (2018). Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Research International, 103, 84-102. https://doi.org/10.1016/j.foodres.2017.10.025
Heleno, S. A., Martins, A., Queiroz, M. J. R. P., Ferreira, I. C. F. R. (2015). Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 173, 501-513. https://doi.org/10.1016/j.foodchem.2014.10.057
Jesch, E. D., Carr, T. P. (2017). Food Ingredients That Inhibit Cholesterol Absorption. Preventive nutrition and food science, 22(2), 67-80. https://doi.org/10.3746/pnf.2017.22.2.67
Kaur, N. & Singh, D. P. (2017). Deciphering the consumer behaviour facets of functional foods: A literature review. Appetite, 112, 167-187. https://doi.org/10.1016/j.appet.2017.01.033
Koistinen, V. M. & Hanhineva, K. (2017). Mass spectrometry-based analysis of whole-grain phytochemicals. Critical Reviews in Food Science and Nutrition, 57(8), 1688-1709. https://doi.org/10.1080/10408398.2015.1016477
Le Bleis, F., Chaunier, L., Chiron, H., Della Valle, G., Saulnier, L. (2015). Rheological properties of wheat flour dough and French bread enriched with wheat bran. Journal of Cereal Science, 65, 167-174. https://doi.org/10.1016/j.jcs.2015.06.014
Liu, R. H.(2007). Whole grain phytochemicals and health. Journal of Cereal Science, 46(3), 207-219. https://doi.org/10.1016/j.jcs.2007.06.010
Mattila, P., Pihlava, J.-M., Hellström, J. (2005). Contents of Phenolic Acids, Alkyl- and Alkenylresorcinols, and Avenanthramides in Commercial Grain Products. Journal of Agricultural and Food Chemistry, 53(21), 8290-8295. https://doi.org/10.1021/jf051437z
McKevith, B. (2004). Nutritional aspects of cereals. Nutrition Bulletin, 29(2), 111-142. https://doi.org/10.1111/j.1467-3010.2004.00418.x
Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2), 181-188. https://doi.org/10.1016/S0260-8774(02)00247-9
Naczk, M. & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1523-1542. https://doi.org/10.1016/j.jpba.2006.04.002
Oghbaei, M., Prakash, J. (2016). Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food & Agriculture, 2(1), 1136015. https://doi.org/10.1080/23311932.2015.1136015
Oliveira, D. M., Mota, T. R., Oliva, B., Segato, F., Marchiosi, R., Ferrarese-Filho, O., Faulds, C. B., dos Santos, W. D. (2019). Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology, 278, 408-423. https://doi.org/10.1016/j.biortech.2019.01.064
Onipe, O. O., Jideani, A. I. O., Beswa, D. (2015). Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science & Technology, 50(12), 2509-2518. https://doi.org/10.1111/ijfs.12935
Ostlund, J. R. E., Racette, S. B., Stenson, W. F. (2003). Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. The American Journal of Clinical Nutrition, 77(6), 1385-1389. https://doi.org/10.1093/ajcn/77.6.1385
Patel, S. (2015). Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. Journal of Functional Foods, 14, 255-269. https://doi.org/10.1016/j.jff.2015.02.010
Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., Peñas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology, 76, 236-244. https://doi.org/10.1016/j.lwt.2016.07.064
Pérez-Jiménez, J., Díaz-Rubio, M. E., Saura-Calixto, F. (2013). Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutrition Research Reviews, 26(2), 118-129. https://doi.org/10.1017/s0954422413000097
Petersen, M., Hans, J., Matern, U. (2010). Biosynthesis of Phenylpropanoids and Related Compounds. V M. Wink (Ur.), Annual Plant review,s Biochemistry of Plant Secondary Metabolism, Second edition (str. 182-257).Singapore: Blackwell Publishing, Ltd. https://doi.org/10.1002/9781444320503.ch4
Ragaee, S., Abdel-Aal, E.-S. M., Noaman, M. (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98(1), 32-38. https://doi.org/10.1016/j.foodchem.2005.04.039
Rao, R. S. P. & Muralikrishna, G. (2004). Non-starch polysaccharide–phenolic acid complexes from native and germinated cereals and millet. Food Chemistry, 84(4), 527-531. https://doi.org/10.1016/S0308-8146(03)00274-7
Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 58(15), 2531-2548. https://doi.org/10.1080/10408398.2017.1331200
Seetharaman, K. & Abdel-Aal, E.-S. M. (2014). The Impact of Milling and Thermal Processing on Phenolic Compounds in Cereal Grains AU - Ragaee, Sanaa. Critical Reviews in Food Science and Nutrition, 54(7), 837-849. https://doi.org/10.1080/10408398.2011.610906
Selma, M. V., Espín, J. C., Tomás-Barberán, F. A. (2009). Interaction between Phenolics and Gut Microbiota: Role in Human Health. Journal of Agricultural and Food Chemistry, 57(15), 6485-6501. https://doi.org/10.1021/jf902107d
Shahidi F. & Yeo J. 2016. Insoluble-Bound Phenolics in Food. Molecules, 21(9), 1216. https://doi: 10.3390/molecules21091216
Siró, I., Kápolna, E., Kápolna, B., Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—A review. Appetite, 51(3), 456-467. https://doi.org/10.1016/j.appet.2008.05.060
Slavin, J. L., Jacobs, D., Marquart, L. 2000. Grain Processing and Nutrition. Critical Reviews in Food Science and Nutrition, 40(4), 309-326. https://doi.org/10.1080/10408690091189176
Terpinc, P. & Abramovič, H. (2010). A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chemistry, 121(2), 366-371. https://doi.org/10.1016/j.foodchem.2009.12.037
Williamson, G. & Clifford, M. N. (2017). Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology, 139, 24-39. https://doi.org/10.1016/j.bcp.2017.03.012
Xu, M., Rao, J., Chen, B. (2019). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical Reviews in Food Science and Nutrition, 1-20. https://doi.org/10.1080/10408398.2018.1550051
Zhu, F., Du, B., Xu, B. (2016). A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 52, 275-288. https://doi.org/10.1016/j.foodhyd.2015.07.003
DOI: http://dx.doi.org/10.14720/aas.2019.114.2.12
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2019
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941