Vezane fenolne spojine polnozrnatih žitnih pripravkov kot sestavina funkcionalnih živil: prvi del

Petra TERPINC

Povzetek


številne presnovne bolezni sodobnega časa so povezane z neuravnoteženo energijsko bogato prehrano, ki je osiromašena s prehransko vlaknino in drugimi zaščitnimi bioaktivnimi snovmi. Glede na omejen uspeh terapevtskih posegov za zdravljenje debelosti in presnovnega sindroma se je povečalo zanimanje za druge možnosti. V prvem delu se osredotočamo na pomen polnozrnatih žit v prehrani, spoznamo ključne bioaktivne komponente žit in njihovo razporeditev znotraj zrna. Izvemo, da otrobi, stranski proizvod žitno predelovalne industrije, predstavljajo neizkoriščen vir fenolnih spojin. Biosinteza slednjih poteka na endoplazmatskem retikulumu in v plastidih od koder se prenesejo do drugih organelov znotraj celice. Deaminiranje, hidroksiliranje in metiliranje so osrednje reakcije nastanka hidroksibenzojskih in hidroksicimetnih kislin. Poseben poudarek namenjamo fenolnim spojinam, ki ostanejo v trdnem ostanku po solventni ekstrakciji z vodnimi raztopinami organskih topil. Te neekstraktibilne fenolne spojine, ki so kovalentno vezane na celično steno, so v tovrstnih raziskavah pogosto prezrte in posledično je vsebnost bioaktivnih snovi v žitih nemalokrat podcenjena. Ferulna kislina, kot najpomembnejši predstavnik, je in vitro poznana po zaviranju bolezni, ki so posledica oksidativnega stresa – preprečuje razna rakava obolenja, srčno-žilne in nevrodegenerativne bolezni. Vezane fenolne spojine se ne razgradijo v prebavnem traktu, kot različni metaboliti se absorbirajo v krvni obtok šele po fermentaciji s pomočjo črevesne mikroflore. Zadostnemu uživanju vezanih fenolnih spojin pripisujemo izboljšano antioksidativno in protivnetno delovanje, številni dokazi pa kažejo na njihovo preventivno vlogo pri razvoju črevesnih bolezni.


Ključne besede


polnozrnata žita; bioaktivne spojine; ferulna kislina; biosinteza; metabolizem; proste, konjugirane in vezane fenolne spojine

Celotno besedilo:

PDF

Literatura


Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55. https://doi.org/10.1016/j.foodchem.2013.11.093

Adom, K. K. & Liu, R. H. (2002). Antioxidant Activity of Grains. Journal of Agricultural and Food Chemistry, 50(21), 6182-6187. https://doi.org/10.1021/jf0205099

Alvarez-Jubete, L., Arendt, E. K., Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21(2), 106-113. https://doi.org/10.1016/j.tifs.2009.10.014

Arendt, E. K. & Zannini, E. (2013). Cereals grains for the food and beverage industries. Cambridge, Woodhead Publishing Ltd.

Aura, A.-M. 2008. Microbial metabolism of dietary phenolic compounds in the colon. Phytochemistry Reviews, 7(3), 407-429. https://doi.org/10.1007/s11101-008-9095-3

Belobrajdic, D. P. & Bird, A. R. (2013). The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutrition Journal, 12(1), 62. https://doi.org/10.1186/1475-2891-12-62

Borneo, R., León, A. E. (2012). Whole grain cereals: functional components and health benefits. Food & Function, 3(2), 110-119. https://doi.org/10.1039/c1fo10165j

Boz, H. (2015). Ferulic Acid in Cereals -- a Review. Czech Journal of Food Science, 33(1), 1-7. https://doi.org/10.17221/401/2014-cjfs

Brouns, F. J. P. H., van Buul, V. J., Shewry, P. R. (2013). Does wheat make us fat and sick? Journal of Cereal Science, 58(2), 209-215. https://doi.org/10.1016/j.jcs.2013.06.002

Călinoiu, F. L., Vodnar, C. D. (2018). Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients, 10(11). https://doi.org/10.3390/nu10111615

de Oliveira, D. M., Finger-Teixeira, A., Rodrigues Mota, T., Salvado,r V. H., Moreira-Vilar, F. C., Correa Molinari, H. B., Craig Mitchell, R. A., Marchiosi, R., Ferrarese-Filho, O., Dantas dos Santos, W. (2015). Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 13(9), 1224-1232. https://doi.org/10.1111/pbi.12292

de Oliveira Silva, E. & Batista, R. (2017). Ferulic Acid and Naturally Occurring Compounds Bearing a Feruloyl Moiety: A Review on Their Structures, Occurrence, and Potential Health Benefits. Comprehensive Reviews in Food Science and Food Safety, 16(4), 580-616. https://doi.org/10.1111/1541-4337.12266

Drewnowski A., Gomez-Carneros C. (2000). Bitter taste, phytonutrients, and the consumer: a review. The American Journal of Clinical Nutrition, 72(6), 1424-1435. https://doi.org/10.1093/ajcn/72.6.1424

Espín, J. C., González-Sarrías, A., Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical Pharmacology, 139, 82-93. https://doi.org/10.1016/j.bcp.2017.04.033

Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews, 23(1), 65-134. https://doi.org/10.1017/s0954422410000041

Fraś A., Gołębiewska K., Gołębiewski D., Mańkowski D. R., Boros D., Szecówka P. 2016. Variability in the chemical composition of triticale grain, flour and bread. Journal of Cereal Science, 71, 66-72. https://doi.org/10.1016/j.jcs.2016.06.016

Gänzle, M. G. (2014). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2-10. https://doi.org/10.1016/j.fm.2013.04.007

Gong, L., Cao, W., Chi, H., Wang, J., Zhang, H., Liu, J., Sun, B. (2018). Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Research International, 103, 84-102. https://doi.org/10.1016/j.foodres.2017.10.025

Heleno, S. A., Martins, A., Queiroz, M. J. R. P., Ferreira, I. C. F. R. (2015). Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 173, 501-513. https://doi.org/10.1016/j.foodchem.2014.10.057

Jesch, E. D., Carr, T. P. (2017). Food Ingredients That Inhibit Cholesterol Absorption. Preventive nutrition and food science, 22(2), 67-80. https://doi.org/10.3746/pnf.2017.22.2.67

Kaur, N. & Singh, D. P. (2017). Deciphering the consumer behaviour facets of functional foods: A literature review. Appetite, 112, 167-187. https://doi.org/10.1016/j.appet.2017.01.033

Koistinen, V. M. & Hanhineva, K. (2017). Mass spectrometry-based analysis of whole-grain phytochemicals. Critical Reviews in Food Science and Nutrition, 57(8), 1688-1709. https://doi.org/10.1080/10408398.2015.1016477

Le Bleis, F., Chaunier, L., Chiron, H., Della Valle, G., Saulnier, L. (2015). Rheological properties of wheat flour dough and French bread enriched with wheat bran. Journal of Cereal Science, 65, 167-174. https://doi.org/10.1016/j.jcs.2015.06.014

Liu, R. H.(2007). Whole grain phytochemicals and health. Journal of Cereal Science, 46(3), 207-219. https://doi.org/10.1016/j.jcs.2007.06.010

Mattila, P., Pihlava, J.-M., Hellström, J. (2005). Contents of Phenolic Acids, Alkyl- and Alkenylresorcinols, and Avenanthramides in Commercial Grain Products. Journal of Agricultural and Food Chemistry, 53(21), 8290-8295. https://doi.org/10.1021/jf051437z

McKevith, B. (2004). Nutritional aspects of cereals. Nutrition Bulletin, 29(2), 111-142. https://doi.org/10.1111/j.1467-3010.2004.00418.x

Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2), 181-188. https://doi.org/10.1016/S0260-8774(02)00247-9

Naczk, M. & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1523-1542. https://doi.org/10.1016/j.jpba.2006.04.002

Oghbaei, M., Prakash, J. (2016). Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food & Agriculture, 2(1), 1136015. https://doi.org/10.1080/23311932.2015.1136015

Oliveira, D. M., Mota, T. R., Oliva, B., Segato, F., Marchiosi, R., Ferrarese-Filho, O., Faulds, C. B., dos Santos, W. D. (2019). Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology, 278, 408-423. https://doi.org/10.1016/j.biortech.2019.01.064

Onipe, O. O., Jideani, A. I. O., Beswa, D. (2015). Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science & Technology, 50(12), 2509-2518. https://doi.org/10.1111/ijfs.12935

Ostlund, J. R. E., Racette, S. B., Stenson, W. F. (2003). Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. The American Journal of Clinical Nutrition, 77(6), 1385-1389. https://doi.org/10.1093/ajcn/77.6.1385

Patel, S. (2015). Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. Journal of Functional Foods, 14, 255-269. https://doi.org/10.1016/j.jff.2015.02.010

Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., Peñas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology, 76, 236-244. https://doi.org/10.1016/j.lwt.2016.07.064

Pérez-Jiménez, J., Díaz-Rubio, M. E., Saura-Calixto, F. (2013). Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutrition Research Reviews, 26(2), 118-129. https://doi.org/10.1017/s0954422413000097

Petersen, M., Hans, J., Matern, U. (2010). Biosynthesis of Phenylpropanoids and Related Compounds. V M. Wink (Ur.), Annual Plant review,s Biochemistry of Plant Secondary Metabolism, Second edition (str. 182-257).Singapore: Blackwell Publishing, Ltd. https://doi.org/10.1002/9781444320503.ch4

Ragaee, S., Abdel-Aal, E.-S. M., Noaman, M. (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98(1), 32-38. https://doi.org/10.1016/j.foodchem.2005.04.039

Rao, R. S. P. & Muralikrishna, G. (2004). Non-starch polysaccharide–phenolic acid complexes from native and germinated cereals and millet. Food Chemistry, 84(4), 527-531. https://doi.org/10.1016/S0308-8146(03)00274-7

Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 58(15), 2531-2548. https://doi.org/10.1080/10408398.2017.1331200

Seetharaman, K. & Abdel-Aal, E.-S. M. (2014). The Impact of Milling and Thermal Processing on Phenolic Compounds in Cereal Grains AU - Ragaee, Sanaa. Critical Reviews in Food Science and Nutrition, 54(7), 837-849. https://doi.org/10.1080/10408398.2011.610906

Selma, M. V., Espín, J. C., Tomás-Barberán, F. A. (2009). Interaction between Phenolics and Gut Microbiota: Role in Human Health. Journal of Agricultural and Food Chemistry, 57(15), 6485-6501. https://doi.org/10.1021/jf902107d

Shahidi F. & Yeo J. 2016. Insoluble-Bound Phenolics in Food. Molecules, 21(9), 1216. https://doi: 10.3390/molecules21091216

Siró, I., Kápolna, E., Kápolna, B., Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—A review. Appetite, 51(3), 456-467. https://doi.org/10.1016/j.appet.2008.05.060

Slavin, J. L., Jacobs, D., Marquart, L. 2000. Grain Processing and Nutrition. Critical Reviews in Food Science and Nutrition, 40(4), 309-326. https://doi.org/10.1080/10408690091189176

Terpinc, P. & Abramovič, H. (2010). A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chemistry, 121(2), 366-371. https://doi.org/10.1016/j.foodchem.2009.12.037

Williamson, G. & Clifford, M. N. (2017). Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology, 139, 24-39. https://doi.org/10.1016/j.bcp.2017.03.012

Xu, M., Rao, J., Chen, B. (2019). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical Reviews in Food Science and Nutrition, 1-20. https://doi.org/10.1080/10408398.2018.1550051

Zhu, F., Du, B., Xu, B. (2016). A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 52, 275-288. https://doi.org/10.1016/j.foodhyd.2015.07.003




DOI: http://dx.doi.org/10.14720/aas.2019.114.2.12

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2019

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941