Somatska embriogeneza hipokotilnih kalusov izbrane sorte jajčevca

Hajar SABET, Mahmood MALEKI, Maryam ABDOLI NASAB, Saeid MIRZAEI

Povzetek


Optimizacija tkivnih kultur jajčevca in regeneracijskih razmer sta potrebni za doseganje različnih ciljev kot sta genska transformacija in razvoj somaklonalne variabilnosti. V tej raziskavi so bili uporabljeni hipokotilni izsečki za pridobitev kalusa v gojiščih, ki so vsebovala različne koncentracije NAA in BAP. Med embriogenimi in neembriogenimi kalusi so bile izmerjene koncentracije elementov kot so Ca, Mn, Mg, Fe in K. Za dolžinsko rast poganjkov so bili embriogeni kalusi premeščeni v drugo gojišče, ki je vsebovalo 3,5, 4 in 4,5 mg l-1 BAP in 2 mg l-1 GA3. Na koncu so bili poganjki ukoreninjeni v gojišču, ki je vsebovalo 1, 1,5 in 2 mg l-1 NAA. Rezultati so pokazali, da je bilo za indukcijo embriogenih kalusov najboljše MS gojišče, ki je vsebovalo 0,5 mg l-1 BAP in 0,25 mg l-1 NAA. Dva elementa, Fe in K , sta imela največjo vsebnost v ne-embriogenih kalusih v primerjavi z embriogenimi. Za regeneracijo rastlin, za nastanek in vkoreninjenje poganjkov, je bilo MS gojišče, ki je vsebovalo 4,5 mg l-1 BAP, 2 mg l-1 GA3 in 2 mg l-1 NAA najboljše. V raziskavi je najboljše regeneracijsko obravnavanje dalo 35 poganjkov iz enega izsečka z 92 % vkoreninjenjem. Ta regeneracijski protocol bi lahko bil koristen za gensko transformacijo in raziskave mikro propagacije.

Ključne besede


jajčevec; tkivna kultura; regeneracija s somatsko embriogenezo; BAP; NAA

Celotno besedilo:

PDF (English)

Literatura


Aminifard, M. H., Aroiee, H., Fatemi, H., Ameri, A. & Karimpour, S. (2010). Responses of eggplant (Solanum melongena L.) to different rates of nitrogen under field conditions. Journal of Central European Agriculture, 11(4), 453-458. https://doi.org/10.5513/JCEA01/11.4.863

Bridgen, M. P., Van Houtven, W., & Eeckhaut, T. (2018). Plant Tissue Culture Techniques for Breeding. Ornamental Crops. Springer, 127-144. https://doi.org/10.1007/978-3-319-90698-0_6

Corral-Martínez, P., & Seguí-Simarro, J. M. (2012). Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica, 187, 47-61. https://doi.org/10.1007/s10681-012-0715-z

Chakravarthi, D., Rao, Y., Rao, M., & Manga, V. (2010). Genetic analysis of in vitro callus and production of multiple shoots in eggplant. Plant Cell, Tissue and Organ Culture (PCTOC), 102, 87-97. https://doi.org/10.1007/s11240-010-9709-5

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1-42. https://doi.org/10.2307/3001478

Foo, P. C., Lee, Z. H., Chin, C. K., Subramaniam, S., & Chew, B. L. (2018). Shoot Induction in White Eggplant (Solanum melongena ‘Bulat Putih’) using 6-Benzylaminopurine and Kinetin. Tropical Life Sciences Research, 29, 119. https://doi.org/10.21315/tlsr2018.29.2.9

Franklin, G., Sheeba, C., & Sita, G. L. (2004). Regeneration of eggplant (Solanum melongena L.) from root explants. In Vitro Cellular & Developmental Biology-Plant, 40, 188-191. https://doi.org/10.1079/IVP2003491

Gandonou, C., Errabii, T., Abrini, J., Idaomar, M., Chibi, F., & Senhaji, S. (2005). Effect of genotype on callus induction and plant regeneration from leaf explants of sugarcane (Saccharum sp.). African Journal of Biotechnology, 4.

Hoque, M. E., & Mansfield, J. W. (2004). Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of Indica rice genotypes. Plant Cell, Tissue and Organ Culture, 78, 217-223. https://doi.org/10.1023/B:TICU.0000025640.75168.2d

Igarashi, K., Yoshida, T., & Suzuki, E. (1993). Antioxidative activity of nasunin in chouja-nasu (little eggplant, Solanum melongena L.’chouja’). Nippon Shokuhin Kogyo Gakkaishi, 40, 138-143. https://doi.org/10.3136/nskkk1962.40.138

Kaur, M., Dhatt, A. S., Sandhu, J. S., Sidhu, A. S., & Gosal, S. S. (2013). Effect of media composition and explant type on the regeneration of eggplant (Solanum melongena L.). African Journal of Biotechnology, 12.

Magioli, C., & Mansur, E. (2005). Eggplant (Solanum melongena L.): tissue culture, genetic transformation and use as an alternative model plant. Acta Botanica Brasilica, 19, 139-148. https://doi.org/10.1590/S0102-33062005000100013

Mallaya, N. P., & Ravishankar, G. (2013). In vitro propagation and genetic fidelity study of plant regenerated from inverted hypocotyl explants of eggplant (Solanum melongena ‘Arka Shirish’. Biotech, 3, 45-52. https://doi.org/10.1007/s13205-012-0068-2

Michalojc, Z., & Buczkowska, H. (2008). Content of macroelements in eggplant fruits depending on nitrogen fertilization and plant training method. Journal of Elementology, 13.

Mir, K., Dhatt, A., Sandhu, J., & Sidhu, A. (2011). Effect of genotype, explant and culture medium on organogenesis in brinjal. Indian Journal of Horticulture, 68, 332-335.

Park, S. U., & Facchini, P. J. (2000). Agrobacterium rhizogenes‐mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. Journal of Experimental Botany, 51, 1005-1016. https://doi.org/10.1093/jexbot/51.347.1005

Portis, E., Lanteri, S., Barchi, L., Portis, F., Valente, L., Toppino, L., Rotino, G. L., et al. (2018). Comprehensive characterization of simple sequence repeats in eggplant (Solanum melongena L.) genome and construction of a web resource. Frontiers in Plant Science, 9, 401. https://doi.org/10.3389/fpls.2018.00401

Rahman, M., Asaduzzaman, M., Nahar, N., & Bari, M. (2006). Efficient plant regeneration from cotyledon and midrib derived callus in eggplant (Solanum melongena L.). Journal of Bio-Science, 14, 31-38. https://doi.org/10.3329/jbs.v14i0.439

Ray, B. P., Hassan, L., & Sarker, S. K. (2011). In vitro cultivation and regeneration of Solanum melongena L. using stem, root and leaf explants. Nepal Journal of Biotechnology, 1, 49-54. https://doi.org/10.3126/njb.v1i1.4172

Rivas-Sendra, A., Corral-Martínez, P., Camacho-Fernández, C., & Seguí-Simarro, J. M. (2015). Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell, Tissue and Organ Culture (PCTOC), 122, 759-765. https://doi.org/10.1007/s11240-015-0791-6

Satish, L., Rameshkumar, R., Rathinapriya, P., Pandian, S., Rency, A. S., Sunitha, T., & Ramesh, M. (2015). Effect of seaweed liquid extracts and plant growth regulators on in vitro mass propagation of brinjal (Solanum melongena L.) through hypocotyl and leaf disc explants. Journal of Applied Phycology, 27, 993-1002. https://doi.org/10.1007/s10811-014-0375-6

Schween, G., & Schwenkel, H. G. (2003). Effect of genotype on callus induction, shoot regeneration, and phenotypic stability of regenerated plants in the greenhouse of Primula ssp. Plant Cell, Tissue and Organ Culture, 72, 53-61. https://doi.org/10.1023/A:1021227414880

Shivaraj, G., & Rao, S. (2011). Rapid and efficient plant regeneration of eggplant (Solanum melongena L.) from cotyledonary leaf explants. Indian Journal of Biotechnology, 10, 125-129.

Zale, J. M., Borchardt-Wier, H., Kidwell, K. K., & Steber, C. M. (2004). Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell, Tissue and Organ Culture, 76, 277-281. https://doi.org/10.1023/B:TICU.0000009248.32457.4c

Zayova, E., Nikova, V., Ilieva, K., & Philipov, P. (2008). Callusogenesis of eggplant (Solanum melongena L.). Comptes Rendus De L Academie Bulgare Des Sciences, 61, 1485-1490.




DOI: http://dx.doi.org/10.14720/aas.2020.115.1.1314

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2020

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941