Od rastlinske biomase do biogoriv in bio-surovin z mikrobnimi celičnimi tovarnami

Maša VODOVNIK, Matevž ZLATNAR

Povzetek


Naraščajoče potrebe po obnovljivih virih energije in globalno segrevanje predstavljata ključna izziva prihodnosti človeške družbe. Za trajnostni razvoj industrije je nujna neprekinjena oskrba z obnovljivo energijo. Odpadna rastlinska biomasa predstavlja velik rezervoar obnovljive energije, ki jo je mogoče pretvoriti v biogoriva in druge produkte z dodano vrednostjo, vendar trenutno za tovrstno pridobivanje energentov še ni na voljo dovolj učinkovitih biokatalizatorjev. Omejujoča stopnja mikrobiološke pretvorbe odpadne rastlinske biomase v produkte z veliko dodano vrednostjo je hidroliza strukturnih polimerov do topnih podenot, ki predstavljajo substrat za fermentacijo do biogoriv in biosurovin z večjo dodano vrednostjo. V želji, da bi drage in neekološke tradicionalne postopke fizikalne in kemične predobdelave lignoceluloznih substratov nadomestili z okoljevarstveno sprejemljivejšimi biološkimi, v zadnjem desetletju poteka intenzivno proučevanju mikrobnih encimskih sistemov za razgradnjo rastlinske biomase. Vzporedno je nesluten razvoj orodij za gensko in metabolno spreminjanje mikrobnih celic omogočil pomembne dosežke na področju načrtovanja mikrobnih celičnih tovarn za optimizirano proizvodnjo biogoriv. Ena od obetavnejših naprednih strategij usmerjenih k temu cilju je tudi sistematično načrtovanje in ekspresija celulosomov »po meri« v solventogenih industrijskih sevih, čemur smo v pregledu posvetili največ pozornosti.


Ključne besede


odpadna rastlinska biomasa; biokatalizatorji, biogoriva; topila;mikrobne celične tovarne

Celotno besedilo:

PDF (English)

Literatura


Arantes, V., Saddler, J.N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels, 3(4),. https://doi.org/10.1186/1754-6834-3-4

Arai, T., Matsuoka, S., Cho, H.-Y., Yukawa, H., Inui, M., Wong, S.-L., Doi, R.H. (2007). Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proceedings of National Academy Of Science, 104, 1456–1460. https://doi.org/10.1073/PNAS.0610740104

Argyros, D.A., Tripathi, S.A., Barrett, T.F., Rogers, S.R., Feinberg, L.F., Olson, D.G., ..., Hogsett, D.A. (2011). High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Applied and Environmental Microbiology, 77(23), 8288–8294. https://doi.org/10.1128/AEM.00646-1

Aro, N., Pakula, T., Penttila, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 29(4), 719-739. https://doi.org/10.1016/j.femsre.2004.11.006

Azad, K., Rasul, M.G., Khan, M.M.K., Sharma, S.C. (2019). Introduction to sustainable and alternative ecofuels, in: Azad, K. (Ed.), Advances in Eco-Fuels for a Sustainable Environment, Woodhead Publishing Series in Energy. Woodhead Publishing, pp. 1–14. https://doi.org/https://doi.org/10.1016/B978-0-08-102728-8.00001-2

Burdette, L.A., Leach, S.A., Wong, H.T., Tullman-Ercek, D. (2018). Developing Gram-negative bacteria for the secretion of heterologous proteins. Microbial cell factories, 17. https://doi.org/10.1186/s12934-018-1041-5

Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel processing Technology, 160, 196–206. https://doi.org/https://doi.org/10.1016/j.fuproc.2016.12.007

Choi, K.R., Jiao S., Lee, S.Y. (2020). Metabolic engineering strategies toward production of biofuels. Current opinion in Chemical Biology, 59, 1–14. https://doi.org/https://doi.org/10.1016/j.cbpa.2020.02.009

Conti, J.J. (2011). International Energy Outlook. IEA: 246 str. https://www.eia.gov/outlooks/aeo/pdf/03832011.pdf (23.8.2019)

EU. (2018/2001). Directive (eu) 2018/2001 of the european parliament and of the council. Retrieved from https://eur-lex.europa.eu/eli/dir/2018/2001/oj

Hahn–Hägerdal, B., Galbe, M., Gorwa–Grauslund, M.F., Liden, G., Zacchi. G. (2006). Bio– ethanol: the fuel of tomorrow from the residues of today. Trends in Biotechnology, 24(12), 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004

Huang, J., Xia, T., Li, G., Li, X., Li, Y., Wang, Y., … Wang, L. (2019). Overproduction of native endo-β-1,4-glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnology for Biofuels, 12(11). https://doi.org/10.1186/s13068-018-1351-1

Idiris, A., Tohda, H., Kumagai, H., Takegawa, K. (2010). Engineering of protein secretion in yeast: strategies and impact on protein production. Applied Microbiology and Biotechnology, 86(2), 403–417. https://doi.org/10.1007/s00253-010-2447-0

Jiang, Y., Xu, C., Dong, F., Yang, Y., Jiang, W., Yang, S. (2009). Disruption of the acetoacetate decarboxylase gene in solvent–producing Clostridium acetobutylicum increases the butanol ratio. Metabolic Engineering, 11(4–5), 284–291. https://doi.org/10.1016/j.ymben.2009.06.002

Joshi, C.P., Nookaraju, A. (2012). New Avenues of Bioenergy Production from Plants: Green Alternatives to Petroleum. Journal of Phylogenetics and Evolutionary Biology, 3, 134. https://doi.org/10.4172/2157-7463.1000134

Keegstra, K. (2010). Plant cell walls. Plant Physiology, 154, 483–486. https://doi.org/10.1104/pp.110.161240

Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W. (2011). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109(4), 1083-1087. https://doi.org/10.1002/bit.24370

Kótai, L., Szépvölgyi, J., Szilágyi, M., Zhibin, L., Baiquan, C., Sharma, V., Sharma, P.K. (2013). Biobutanol from renewable agricultural and lignocellulose resources and its perspectives as alternative of liquid fuels. In Z. Fang (ed.) Liquid, gaseous and solid biofuels– conversion techniques (pp. 199-262). Rijeka, InTech. https://doi.org/10.5772/52379

Frandsen, K.E.H., Simmons, T.J., Dupree, P., Poulsen, J.C.N., Hemsworth, G.R., Ciano, L., ... Walton, P.H. (2016). The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nature Chemical Biology, 12, 298-303. https://doi.org/10.1038/nchembio.2029

Leis, B., Held, C., Andreeßen, B., Liebl, W., Graubner, S., Schulte, P., Schwarz, W., Zverlov, V. (2018). Optimizing the composition of a synthetic cellulosome complex for the hydrolysis of softwood pulp: Identification of the enzymatic core functions and biochemical complex characterization. Biotechnology for Biofuels, 11. https://doi.org/10.1186/s13068-018-1220-y

Levin, D., Verbeke, T., Munir, R., Islam, R., Ramachandran, U., Lal, S., Schellenberg, J., Sparling, R. (2015). Omics approaches for designing biofuel producing cocultures for enhanced microbial conversion of lignocellulosic substrates. In: M.E. Himmel, M.E. (Ed.), Direct Microbial Conversion of Biomass to Advanced Biofuels (pp. 335-363). Elsevier. https://doi.org/10.1016/B978-0-444-59592-8.00017-8

Liu, J., Shi, P., Ahmad, S., Yin, C., Liu, X., Liu, Y., Zhang, H., Xu, Q., Yan, H., & Li, Q. (2019). Co-culture of Bacillus coagulans and Candida utilis efficiently treats Lactobacillus fermentation wastewater. AMB Express, 9(1), 15. https://doi.org/10.1186/s13568-019-0743-3

Lütke-Eversloh, T. (2014). Application of new metabolic engineering tools for Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 98(13), 5823-5837. https://doi.org/10.1007/s00253-014-5785-5.

Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M. P., Chisti, Y. (2018). Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 82(3), 3863–3885. https://doi.org/10.1016/j.rser.2017.10.085

Malgas, S., Pletschke, B.I.(2019). The effect of an oligosaccharide reducing-end xylanase, BhRex8A, on the synergistic degradation of xylan backbones by an optimised xylanolytic enzyme cocktail. Enzyme Microbial Technology, 122, 74–81. https://doi.org/10.1016/j.enzmictec.2018.12.010

Moraïs, S., Stern, J., Kahn, A., Galanopoulou, A.P., Yoav, S., Shamshoum, ...Bayer, E. A. (2016). Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Biotechnology for Biofuels, 9(164). https://doi.org/10.1186/s13068-016-0577-z

Das, M., Patra, P., Ghosh, A. (2020). Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renewable and Sustainable Energy Reviews, 119, 109562. https://doi.org/https://doi.org/10.1016/j.rser.2019.109562

Das Murtey, M.,&6 Ramasamy, P. (2016). Sample preparations for scanning electron microscopy – Life Sciences. In: M. Janicek & R. Kral (Eds.), Modern Electron Microscopy in Physical and Life Sciences, + IntechOpen. https://doi.org/10.5772/61720

Nevoigt E. (2008). Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 72(3), 379–412. https://doi.org/10.1128/MMBR.00025-07

Olson, D.G., McBride J.E., Shaw, A.J., Lynd, L.R. (2012). Recent progress in consolidated bioprocessing. Current Opinion in Biotechnology, 23(3), 396–405. https://doi.org/10.1016/j.copbio.2011.11.026

O’Sullivan, A.C. (1997). Cellulose: the structure slowly unravels. Cellulose, 4, 173–207. https://doi.org/10.1023/A:1018431705579

Pakula, T.M., Salonen K., Uusitalo, J., Penttila, M. (2005). The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiology, 151(1), 135-143. https://doi.org/10.1099/mic.0.27458-0

Piškur, J., Langkjaer, R.B. (2004). Yeast genome sequencing: the power of comparative genomics. Molecular Microbiology, 53(2), 381–389. https://doi.org/10.1111/j.1365-2958.2004.04182.x

Plácido, J., Capareda, S. (2015). Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresources and Bioprocesses, 2(23). https://doi.org/10.1186/s40643-015-0049-5

Reed, B., Chen, R. (2013). Biotechnological applications of bacterial protein secretion: from therapeutics to biofuel production. Research in Microbiology, 164, 675–682. https://doi.org/https://doi.org/10.1016/j.resmic.2013.03.006

Shafiee, S., Topal, E. (2009). When will fossill fuel reserves be diminished? Energy Policy, 37(1), 181–189. https://doi.org/10.1016/j.enpol.2008.08.016

da Silva Trindade, W.R., dos Santos, R.G. (2017). Review on the characteristics of butanol, its production and use as fuel in in ternal combustion engines. Renewable & Sustainable Energy Reviews, 69, 642–651. https://doi.org/10.1016/j.rser.2016.11.213

Su, X., Chu, X., Dong, Z. (2009). Identification of elevated transcripts in a Trichoderma reesei strain expressing a chimeric transcription activator using suppression subtractive hybridization. World Journal of Microbiology and Biotechnology, 25(6), 1075-1084. https://doi.org/10.1007/s11274-009-9993-6

Subramaniam, Y., Masron, T.A., Azman, N.H.N. (2020). Biofuels, environmental sustainability, and food security: A review of 51 countries. Energy Research and Social Science, 68, 101549. https://doi.org/https://doi.org/10.1016/j.erss.2020.101549

Tsai, S.L., Oh, J., Singh, S., Chen, R., Chen, W. (2009). Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Applied and Environmental Microbiology, 75(19), 6087–6093. https://doi.org/10.1128/AEM.01538-09

Tummala, S.B., Welker, N.E., Papoutsakis, E.T. (2003). Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostrdidium acetobutylicum. Journal of Bacteriology, 185(6), 1923–1934. https://doi.org/10.1128/JB.185.6.1923-1934.2003

Venkata Mohan, S., Modestra, J.A., Amulya, K., Butti, S.K., Velvizhi, G. (2016). A circular bioeconomy with biobased products from CO2 sequestration. Trends in Biotechnology, 34, 506–519. https://doi.org/10.1016/j.tibtech.2016.02.012

Vodovnik, M., Marinšek-Logar, R. (2010). Cellulosomes – promising supramolecular machines of anaerobic cellulolyticmicroorganisms. Acta chimica slovenica, 57, 767-774.

Willson, B.J., Kovács, K., Wilding-Steele, T., Markus, R., Winzer, K., Minton, N.P. (2016). Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824. Biotechnology for Biofuels, 9(109). https://doi.org/10.1186/s13068-016-0526-x

Xue, C., Zhao, J., Chen, L., Yang, S.T., Bai, F. (2017). Recent advances and state–of–the–art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnology Advances, 35(2), 310–322. https://doi.org/10.1016/j.biotechadv.2017.01.007

Yang, X., Xu, M., Yang, S.T. (2015). Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metabolic Engineering, 32, 39–48. https://doi.org/10.1016/j.ymben.2015.09.001

Zhang, J., Zhang, X. (2019). The thermochemical conversion of biomass into biofuels.In Verma D., Fortunati E., Jain S., Zhang X. (Eds.) Biomass, biopolymer-based materials and Bioenergy (pp. 327–368). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102426-3.00015-1




DOI: http://dx.doi.org/10.14720/aas.2020.116.1.1331

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2020

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941