Vloga dodajanja silicija za preprečevanje strupenosti nano delcev Al2O3 pri ječmenu (Hordeum vulgare L.)

Ghader HABIBI, Maryam SHAHINFAR

Povzetek


V raziskavi je bil uporabljen silicij (Si), v obliki 2 mM K2SiO3, za preprečevanje strupenosti nano delcev aluminijeva oksida (Al2O3;NPs) pri ječmeni (Hordeum vulgare L.). Analiza z ICP-MS je pokazala, da so bili nano delci Al2O3 privzeti v rastline. Na rast ječmena je negativno vplival dodatek 3 g l-1 nano delcev Al2O3, medtem, ko rast ječmena ni bila občutno zmanjšana pri dodatku 1 g l-1 nanodelcev Al2O3, kar kaže, da je učinek nano delcev Al2O3 odvisen od doze. Predhodno obravnavanje rastlin s silicijem je oblažilo toksičen učinek velikih koncentracij nano delcev Al2O3 na rast korenin. Predhodno obravnavanje s Si ni zmanjšalo privzema nano delcev Al2O3 v korenine ampak zmanjšalo njihovo kopičenje v poganjkih. Omejitev translokacije nano delcev Al2O3 iz korenin v poganjke se je izkazala kot pomemben mehanizem preprečevanja njihove toksičnosti s silicijem. Pojav oksidacijskega stresa pri obravnavanju z 3 g l-1 nano delci Al2O3 je bil ovrednoten s kopičenjem malondialdehida (MDA). Dodajanje silicija lahko prepreči nastanek toksičnih znakov, ki jih povzročajo nano delci Al2O3 preko zmanjšanja peroksidacije lipidov s povečevanjem aktivnost katalaze kot tudi z omejevanjem njihove translokacije iz korenin v poganjke. Ti izsledki so prvi neposreden dokaz, da predobravnavanje s silicijem zmanjšuje strupenost nano delcev Al2O3 pri rastlinah.


Ključne besede


Hordeum vulgare L.; malondialdehid; nano-Al2O3; nanotoksičnost; silicij

Celotno besedilo:

PDF (English)

Literatura


Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Irshad, M.K. (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicology and Environmental Safety, 119, 186-197. https://doi.org/10.1016/j.ecoenv.2015.05.011

Asztemborska, M., Steborowski, R., Kowalska, J., Bystrzejewska-Piotrowska, G. (2015). Accumulation of Al by plants exposed to nano-and microsized particles of Al2O3. International Journal of Environmental Research, 9(1), 109-116. https://doi.org/10.1371/journal.pone.0034783

Burklew, C. E., Ashlock, J., Winfrey, W. B., Zhang, B. (2012). Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PlOS One, 7(5), e34783.

Broadley, M., Brown, P., Cakmak, I., Ma, J. F., Rengel, Z., Zhao, F. (2012). Beneficial elements. In Marschner’s mineral nutrition of higher plants (pp. 249-269). Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00008-X

Collin, B., Doelsch, E., Keller, C., Cazevieille, P., Tella, M., Chaurand, P., ... & Meunier, J. D. (2014). Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. Environmental Pollution, 187, 22-30. https://doi.org/10.1016/j.envpol.2013.12.024

Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166-1170. https://doi.org/10.1038/nbt875

Dorneles, A.O.S., Pereira, A. S., Rossato, L. V., Possebom, G., Sasso, V. M., Bernardy, K., ... Tabaldi, L.A. (2016). Silicon reduces aluminum content in tissues and ameliorates its toxic effects on potato plant growth. Ciência Rural, 46(3), 506-512. https://doi.org/10.1590/0103-8478cr20150585

Dorneles, A. O. S., Pereira, A. S., Sasso, V. M., Possebom, G., Tarouco, C. P., Schorr, M. R. W., ... & Tabaldi, L. A. (2019). Aluminum stress tolerance in potato genotypes grown with silicon. Bragantia, 78(1), 12-25. https://doi.org/10.1590/1678-4499.2018007

Fujii, M., Yokosho, K., Yamaji, N., Saisho, D., Yamane, M., Takahashi, H., ... & Ma, J. F. (2012). Acquisition of Al tolerance by modification of a single gene in barley. Nature Communications, 3, 713. https://doi.org/10.1038/ncomms1726

Habibi, G. (2014). Role of trace elements in alleviating environmental stress. In Emerging Technologies and Management of Crop Stress Tolerance Biological Techniques. Ahmad P., Rasool S. (eds.). Elsevier, USA, 313-331. https://doi.org/10.1016/B978-0-12-800876-8.00014-X

Habibi, G., Hajiboland, R. (2012). Comparison of photosynthesis and antioxidative protection in Sedum album and Sedum stoloniferum (Crassulaceae) under water stress. Photosynthetica, 50(4), 508-518. https://doi.org/10.1007/s11099-012-0066-y

Habibi, G. (2016). Effect of foliar-applied silicon on photochemistry, antioxidant capacity and growth in maize plants subjected to chilling stress. Acta agriculturae Slovenica, 107(1), 33-43. https://doi.org/10.14720/aas.2016.107.1.04

Hammond, K. E., Evans, D. E., Hodson, M. J. (1995). Al/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant and Soil, 173(1), 89-95. https://doi.org/10.1007/BF00155521

Hanemann, T., Szabó, D. V. (2010). Polymer-nanoparticle composites: from synthesis to modern applications. Materials, 3(6), 3468-3517. https://doi.org/10.3390/ma3063468

Johnson, C. M., Stout, P. R., Broyer, T. C., Carlton, A. B. (1957). Comparative chlorine requirements of different plant species. Plant and Soil, 8(4), 337-353. https://doi.org/10.1007/BF01666323

Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y. C., Braam, J., Alvarez, P. J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29(3), 669-675. https://doi.org/10.1002/etc.58

Lee, K., Hong, S. B., Lee, J., Chung, J., Hur, S. D., Hong, S. (2015). Seasonal variation in the input of atmospheric selenium to northwestern Greenland snow. Science of the Total Environment, 526, 49-57. https://doi.org/10.1016/j.scitotenv.2015.04.082

Lee, W. M., An, Y. J., Yoon, H., Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water‐insoluble nanoparticles. Environmental Toxicology and Chemistry, 27(9), 1915-1921. https://doi.org/10.1897/07-481.1

Lichtenthaler, H. K., Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591

Lin, D., Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243-250. https://doi.org/10.1016/j.envpol.2007.01.016

Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Al tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6(6), 273-278. https://doi.org/10.1016/S1360-1385(01)01961-6

Prabagar, S., Hodson, M. J., Evans, D. E. (2011). Silicon amelioration of Al toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.). Environmental and Experimental Botany, 70(2), 266-276. https://doi.org/10.1016/j.envexpbot.2010.10.001

Rahman, M., Lee, S.H., Ji, H.C., Kabir, A.H., Jones, C.S. and Lee, K.W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International Journal of Molecular Sciences, 19(10), 3073. https://doi.org/10.3390/ijms19103073

Singh, V. P., Tripathi, D. K., Kumar, D., Chauhan, D. K. (2011). Influence of exogenous silicon addition on Al tolerance in rice seedlings. Biological Trace Element Research, 144(1-3), 1260-1274. https://doi.org/10.1007/s12011-011-9118-6

Shen, X., Xiao, X., Dong, Z., Chen, Y. (2014). Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiologiae Plantarum, 36(11), 3063-3069. https://doi.org/10.1007/s11738-014-1676-8

Wang, J. P., Raman, H., Zhang, G. P., Mendham, N., Zhou, M. X. (2006). Al tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. Journal of Zhejiang University SCIENCE B, 7(10), 769-787. https://doi.org/10.1631/jzus.2006.B0769

Wang, Y., Stass, A., Horst, W. J. (2004). Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiology, 136(3), 3762-3770. https://doi.org/10.1104/pp.104.045005

Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D., Biswas, P. (2006). Assessing the risks of manufactured nanomaterials. Environmental Science & Technology, 15, 4336-4345.

Yang, L., Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158(2), 122-132. https://doi.org/10.1016/j.toxlet.2005.03.003

Yanık, F., Vardar, F. (2015). Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water, Air, & Soil Pollution, 226(9), 296. https://doi.org/10.1007/s11270-015-2566-4

Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 9(3), 73. https://doi.org/10.1007/s13205-019-1613-z

Zhu, Y., Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455-472. https://doi.org/10.1007/s13593-013-0194-1




DOI: http://dx.doi.org/10.14720/aas.2021.117.1.1378

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941