Preučevanje raznolikosti izražanja genov pri dveh vrstah krčnic (Hypericum spp.) pred in po cvetenju v razmerah različnega gnojenja z dušikom
Povzetek
Šentjanževka (Hypericum perforatum L.) je že od nekdaj popularna kot tradicionalno zdravilno zelišče zaradi svojih farmacevtskih in barvilnih lastnosti. Sekundarni metabolit iz skupine naftodiantronov v vrstah iz rodu Hypericum imenovan hipericin je odgovoren za antidepresivne, antikancerogene in antivirusne lastnosti tega zelišča. Ugotovljeno je bilo, da so pri biosintezi hipericina udeleženi številni geni. Gen hyp-1 sodeluje pri tej biosintezi preko pretvorbe emodina v hipericin. Naftodiantrona (hipericin in pseudohipericin) se v šentjanževki sintetizirata po poliketidni poti presnove. V rastlinah katalizira reakcije poliketidne presnovne poti encimski kompleks poliketid sintaza (PKS). Gena HpPKS1 in HpPKS2 kodirata PKS encimski kompleks. V tej raziskavi je bila primerjana relativna ekspresija genov hyp-1, HpPKS1, in HpPKS2 v koreninah in listih vrst Hypericum perforatum in H. androsaemum L., pred in po cvetenju, pri gnojenju z ureo 24, 48 in 72 ur po zalivanju. Največja ekspresija vseh treh genov je bila opažena po cvetenju v vzorcih vrste H. perforatum, 72 ur po tem, ko je bila rastlina fertirigirana z 1 g l-1 uree (hyp-1 v koreninah; HpPKS1 in HpPK (v listih). Relativna ekspresija hyp-1 v koreninah je bila večja kot v listih, a ekspresija genov HpPKS1 in HpPKS2 v listih je bila večja kot v koreninah. Relativna ekspresija vseh treh genov je bila v vrsti H. perforatum večja kot v vrsti H. androsaemum. S povečevanjem intervala med gnojenjem z ureo in zalivanjem se je pokazal trend naraščajoče ekspresije genov, kar se je pokazalo tudi s povečevanjem odmerka uree.
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Afrin, S., Huang, J. J., & Luo, Z. Y. (2015). JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Science Bulletin, 60(12), 1062-1072. https://doi.org/10.1007/s11434-015-0813-0
Agostinis, P., Vantieghem, A., Merlevede, W., & de Witte, P. A. (2002). Hypericin in cancer treatment: more light on the way. The international journal of biochemistry & cell biology, 34(3), 221-241. http://dx.doi.org/10.1016/S1357-2725(01)00126-1
Ayan, A. K., & Cirak, C. (2008). Variation of hypericins in Hypericum triquetrifolium Turra growing in different locations of Turkey during plant growth. Natural product research, 22(18), 1597-1604. https://doi.org/10.1080/14786410701838213
Azeez, H. A., Ameen, A. H., & Faqe, S. A. (2017). Variation in production of of Hypericum triqutrifoliu developmental stages. Journal of zankoy sulaimani-A, 19(2), 29-36. https://doi.org/10.17656/jzs.10608
Azizi, M., & Dias, A. (2004, September). Nitrogen and phosphorus fertilizers affect flavonoids contents of St. John’s wort (Hypericum perforatum L.). In Proc. 4th Int. Iran & Russia Conf. Shahrkurd, Iran (pp. 8-10). Retrieved from: http://iirc.narod.ru/4conference/Fullpaper/20003.pdf
Bais, H. P., Vepachedu, R., Lawrence, C. B., Stermitz, F. R., & Vivanco, J. M. (2003). Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). Journal of Biological Chemistry, 278(34), 32413-32422. http://dx.doi.org/ 10.1074/jbc.M301681200
Birt, D. F., Widrlechner, M. P., Hammer, K. D., Hillwig, M. L., Wei, J., Kraus, G. A., ... & Wiemer, D. F. (2009). Hypericum in infection: Identification of anti-viral and anti-inflammatory constituents. Pharmaceutical biology, 47(8), 774-782. http://dx.doi.org/10.1080/13880200902988645
Briskin, D. P., & Gawienowski, M. C. (2001). Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiology and Biochemistry, 39(12), 1075-1081. http://dx.doi.org/10.1016/S0981-9428(01)01326-2
Bruni, R., & Sacchetti, G. (2009). Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules, 14(2), 682-725. http://dx.doi.org/10.3390/molecules14020682
Büter, K. B., & Büter, B. (2002). Ontogenetic variation regarding hypericin and hyperforin levels in four accessions of Hypericum perforatum L. Journal of Herbs, Spices & Medicinal Plants, 9(2-3), 95-100. https://doi.org/10.1300/J044v09n02_14
Butterweck, V. (2003). Mechanism of action of St John’s wort in depression. CNS drugs, 17(8), 539-562. http://dx.doi.org/10.2165/00023210-200317080-00001
Cui, X. H., Murthy, H. N., Wu, C. H., & Paek, K. Y. (2010). Adventitious root suspension cultures of Hypericum perforatum: effect of nitrogen source on production of biomass and secondary metabolites. In Vitro Cellular & Developmental Biology-Plant, 46(5), 437-444. http://doi.org/10.1007/s11627-010-9310-y
Daneshian, A., Gurbuz, B., Cosge, B., & Ipek, A. (2009). Chemical Components of Essential Oils from Basil (Ocimum basilicum L.) Grown at Different Nitrogen Levels. International Journal of Natural & Engineering Sciences, 3(3). http://www.ijnes.org/index.php/ijnes/article/view/505/475
Deepak, S. A., Kottapalli, K. R., Rakwal, R., Oros, G., Rangappa, K. S., Iwahashi, H., ... & Agrawal, G. K. (2007). Real-time PCR: revolutionizing detection and expression analysis of genes. Current genomics, 8(4), 234-251. http://doi.org/10.2174/138920207781386960
Duke, J. A. (2002). Handbook of medicinal herbs. CRC press. Inc. Boca Raton, Florida.
Duppong, L. M., Delate, K., Liebman, M., Horton, R., Romero, F., Kraus, G., ... & Chowdbury, P. K. (2004). The effect of natural mulches on crop performance, weed suppression and biochemical constituents of catnip and St. John’s wort. Crop science, 44(3), 861-869. http://doi.org/10.2135/cropsci2004.0861
Falk, H. (1999). From the photosensitizer hypericin to the photoreceptor stentorin—the chemistry of phenanthroperylene quinones. Angewandte Chemie International Edition, 38(21), 3116-3136. https://doi.org/10.1002/(SICI)1521-3773(19991102)38:21<3116::AID-ANIE3116>3.0.CO;2-S
Jabbari, R., Dehaghi, M. A., Sanavi, A. M. M., & Agahi, K. (2011). Nitrogen and iron fertilization methods affecting essential oil and chemical composition of thyme (Thymus vulgaris L.) medical plant. Advances in Environmental Biology, 433-439. http://www.aensiweb.com/old/aeb/2011/433-438.pdf
Jendželovská, Z., Jendželovský, R., Kuchárová, B., & Fedoročko, P. (2016). Hypericin in the light and in the dark: two sides of the same coin. Frontiers in plant science, 7, 560. http://dx.doi.org/10.3389/fpls.2016.00560
Karioti, A., & Bilia, A. R. (2010). Hypericins as potential leads for new therapeutics. International journal of molecular sciences, 11(2), 562-594. http://dx.doi.org/10.3390/ijms11020562
Karppinen K (2010) Biosynthesis of hypericins and hyperforins in Hypericum perforatum (St. John’s wort)-precursors and genes involved. Academic dissertation submitted to Faculty of Science, University of Oulu, Oulu. ISBN 978-951-42-6310-1. http://jultika.oulu.fi/Record/isbn978-951-42-6310-1
Khosh-Khui, M., Shekafandeh, A., & Azarakhsh, H. (1984). Micropropagation of myrtle. Scientia horticulturae, 22(1-2), 139-146. https://doi.org/10.1016/0304-4238(84)90094-3
Košuth, J., Katkovčinová, Z., Olexová, P., & Čellárová, E. (2007). Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant cell reports, 26(2), 211-217. http://dx.doi.org/10.1007/s00299-006-0240-4
Kubin, A., Wierrani, F., Burner, U., Alth, G., & Grunberger, W. (2005). Hypericin-the facts about a controversial agent. Current pharmaceutical design, 11(2), 233-253. http://dx.doi.org/10.2174/1381612053382287
Lazzara, S., Militello, M., Carrubba, A., Napoli, E., & Saia, S. (2017). Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza, 27(4), 345-354. http://dx.doi.org/10.1007/s00572-016-0756-6
Lazzara, S., Napoli, E., & Carrubba, A. (2015). Hypericum spp.: a resource from wild Mediterranean flora for the treatment of mild depression. Bioactive phytochemicals—perspectives for modern medicine, 3, 337-354.
Liu, J. J., & Ekramoddoullah, A. K. (2006). The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68(1-3), 3-13. http://doi.org/10.1016/j.pmpp.2006.06.004
Michalska, K., Fernandes, H., Sikorski, M., & Jaskolski, M. (2010). Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. Journal of structural biology, 169(2), 161-171. http://doi.org/10.1016/j.jsb.2009.10.008
Miskovsky, P. (2002). Hypericin-a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules. Current drug targets, 3(1), 55-84. http://dx.doi.org/10.2174/1389450023348091
Murthy, H. N., Kim, Y. S., Park, S. Y., & Paek, K. Y. (2014a). Hypericins: biotechnological production from cell and organ cultures. Applied microbiology and biotechnology, 98(22), 9187-9198. http://dx.doi.org/10.1007/s00253-014-6119-3
Murthy, H. N., Lee, E. J., & Paek, K. Y. (2014b). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture (PCTOC), 118(1), 1-16. http://dx.doi.org/10.1007/s11240-014-0467-7
Nürk, N. M., Madriñán, S., Carine, M. A., Chase, M. W., & Blattner, F. R. (2013). Molecular phylogenetics and morphological evolution of St. John’s wort (Hypericum; Hypericaceae). Molecular Phylogenetics and Evolution, 66(1), 1-16. http://doi.org/10.1016/j.ympev.2012.08.022
Nurzyńska-Wierdak, R. (2013). Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci Pol Hortorum Cultus, 12(5), 3-16. http://www.acta.media.pl/pl/full/7/2013/000070201300012000050000300016.pdf
Onelli, E., Rivetta, A., Giorgi, A., Bignami, M., Cocucci, M., & Patrignani, G. (2002). Ultrastructural studies on the developing secretory nodules of Hypericum perforatum. Flora-Morphology, Distribution, Functional Ecology of Plants, 197(2), 92-102. http://doi.org/10.1078/0367-2530-00019
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45-e45. http://doi.org/10.1093/nar/29.9.e45
Pinto, M. P., Ribeiro, A., Regalado, A. P., Rodrigues-Pousada, C., & Ricardo, C. P. P. (2005). Expression of Lupinus albus PR-10 proteins during root and leaf development. Biologia plantarum, 49(2), 187-193. http://dx.doi.org/10.1007/s10535-005-7193-2
Politycka, B., & Golcz, A. (2004). Content of chloroplast pigments and anthocyanins in the leaves of Ocimum basilicum L. depending on nitrogen doses. Folia horticulturae, 16(1), 23-29. http://www.ptno.ogr.ar.krakow.pl/Wydawn/FoliaHorticulturae/Spisy/FH2004/PDF16012004/fh1601p03.pdf
Radauer, C., Lackner, P., & Breiteneder, H. (2008). The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC evolutionary biology, 8(1), 286. http://doi.org/10.1186/1471-2148-8-286
Rahnavrd, A. (2017). Genetic and biochemical diversity of Hypericum perforatum L. Grown in the caspian climate of Iran. Applied ecology and environmental research, 15(1), 665–675. http://dx.doi.org/10.15666/aeer/1501_665675
Ruhfel, B. R., Stevens, P. F., & Davis, C. C. (2013). Combined morphological and molecular phylogeny of the clusioid clade (Malpighiales) and the placement of the ancient rosid macrofossil Paleoclusia. International Journal of Plant Sciences, 174(6), 910-936. http://dx.doi.org/10.1086/670668
Russo, E., Scicchitano, F., Whalley, B. J., Mazzitello, C., Ciriaco, M., Esposito, S., ... & Mammì, M. (2014). Hypericum perforatum: pharmacokinetic, mechanism of action, tolerability, and clinical drug–drug interactions. Phytotherapy research, 28(5), 643-655. http://doi.org/10.1002/ptr.5050
Samuelsson, G., & Bohlin, L. (2017). Drugs of natural origin: a treatise of pharmacognosy (No. Ed. 7). CRC Press Inc.
Silva, B. A., Ferreres, F., Malva, J. O., & Dias, A. C. (2005). Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food chemistry, 90(1-2), 157-167. http://doi.org/10.1016/j.foodchem.2004.03.049
Sirvent, T., & Gibson, D. (2002). Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiological and Molecular Plant Pathology, 60(6), 311-320. http://doi.org/10.1006/pmpp.2002.0410
Sirvent, T. M., Krasnoff, S. B., & Gibson, D. M. (2003). Induction of hypericins and hyperforins in Hypericum perforatum in response to damage by herbivores. Journal of chemical ecology, 29(12), 2667-2681. http://dx.doi.org/10.1023/B:JOEC.0000008011.77213.64
Sun, P., Kang, T., Xing, H., Zhang, Z., Yang, D., Zhang, J., ... & Li, M. (2019). Phytochemical Changes in Aerial Parts of Hypericum perforatum at Different Harvest Stages. Records of Natural Products, 13(1). http://dx.doi.org/10.25135/rnp.77.18.04.267
Vattikuti, U. M., & Ciddi, V. (2005). An overview on Hypericum perforatum L. Natural Product Radiance, 4(5), 368-381. https://pdfs.semanticscholar.org/2a92/04ef4e20712d0613d3fdfee5c5bfec002362.pdf
Vom Endt, D., Kijne, J. W., & Memelink, J. (2002). Transcription factors controlling plant secondary metabolism: what regulates the regulators?. Phytochemistry, 61(2), 107-114. http://doi.org/10.1016/S0031-9422(02)00185-1
Zhang, X., Jin, B., Zheng, W., Zhang, N., Liu, X., Bing, T., ... & Shangguan, D. (2016). Interaction of hypericin with guanine-rich DNA: Preferential binding to parallel G-Quadruplexes. Dyes and Pigments, 132, 405-411. http://doi.org/10.1016/j.dyepig.2016.05.009
Zhang, Y., Shang, K., Wu, X., Song, S., Li, Z., Pei, Z., & Pei, Y. (2018). Highly efficient green synthesis and photodynamic therapeutic study of hypericin and its derivatives. RSC advances, 8(39), 21786-21792. http://dx.doi.org/10.1039/c8ra03732a
Zheljazkov, V. D., Cantrell, C. L., Astatkie, T., & Cannon, J. B. (2011). Lemongrass productivity, oil content, and composition as a function of nitrogen, sulfur, and harvest time. Agronomy Journal, 103(3), 805-812. http://doi.org/10.2134/agronj2010.0446
Zobayed, S. M. A., Afreen, F., Goto, E., & Kozai, T. (2006). Plant–environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Annals of Botany, 98(4), 793-804. http://doi.org/10.1093/aob/mcl169
DOI: http://dx.doi.org/10.14720/aas.2020.116.1.1593
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2020
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941