Vzpodbuditev aktivnosti encimov povezanih z obrambo in učinkovitost biokontrole z glivo Trichoderma harzianum Rifai v paradižniku okuženem z glivama Fusarium oxysporum Schlecht. emend. Snyder & Hansen in Fusarium solani (Mart.) Sacc.

Tavga Sulaiman RASHID, Sirwa Anwar QADIR, Hayman Kakakhan AWLA

Povzetek


Fuzarijska venenja paradižnika, ki jih povzročata glivi Fusarium oxysporum Schlecht. emend. Snyder & Hansen in Fusarium solani (Mart.) Sacc. so resen problem, ki omejuje svetovno pridelavo paradižnika. Biološka kontrola se je pokazala kot najbolj obetajoča alternativa kemičnim fungicidom. V raziskavi je bila preučevana sposobnost biološkega uravnavanja gliv F. solani in F. oxysporum z izolati glive Trichoderma harzianum. Izolati so zavrli rast kolonij obeh vrst iz rodu Fusarium za več kot 80 % v preiskusih dvojnih kultur. Izsledki iz poskusov v rastlinjaku so pokazali, da je bila obolelost pradižnika značilno manjša, če je bil ta inokuliran hkrati z obema patogenima glivama iz rodu Fusarium in z glivo T. harzianum. Ratline paradižnika, ki so bile inokulirane z izolati antagonistične glive T. harzianum so imele v poskusih v rastlinjaku povečani aktivnosti peroksidaze in polifenol oksidaze ter povečano odpornost proti patogenima glivama F. solani in F. oxysporum. Izolati iz glive T. harzianum so neposredno vplivali na patogena iz rodu Fusarium s povečanjem obrambe rastlin.


Ključne besede


paradižnik; patogene glive; antagonistične glive; rast in biološka kontrola; peroksidaza; polifenol oksidaza

Celotno besedilo:

PDF (English)

Literatura


Abd-El-Khair H, Khalifa R K M, Haggag K H. (2010). Effect of Trichoderma species on damping off diseases incidence, some plant enzymes activity and nutritional status of bean plants. American Journal of Science, 6(9), 486-497.

Abo-Elyousr K A, Hashem M, Ali E H. (2009). Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Protection, 28(4), 295-301. https://doi.org/10.1016/j.cropro.2008.11.004

Alwathnani H A, Perveen K, Tahmaz R, Alhaqbani S. (2012). Evaluation of biological control potential of locally isolated antagonist fungi against Fusarium oxysporum under in vitro and pot conditions. African Journal of Microbiology Research, 6(2), 312-319. https://doi.org/10.5897/AJMR11.1367

Arora R, Wisniewski M E. (1994). Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch)(II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins). Plant Physiology, 105(1), 95-101. https://doi.org/10.1104/pp.105.1.95

Boyaci F, Unlu A, Abak K. (2010). August. Screening for resistance to Fusarium wilt of some cultivated eggplants and wild Solanum accessions. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on New 935 (pp. 23-27). https://doi.org/10.17660/ActaHortic.2012.935.2

Chandra A, Bhatt R K. (1998). Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthesis, 35, 255–258. https://doi.org/10.1023/A:1006966908357

Chao W l, Nelson E B, Harman G E, Hoch H C. (1986). Colonization of the rhizosphere by biological control agents applied to seeds. Phytopathology, 76, 60-65. https://doi.org/10.1094/Phyto-76-60

Christopher D J, Raj T S, Rani S U, Udhayakumar R. (2010). Role of defense enzymes activity in tomato as induced by Trichoderma virens against Fusarium wilt caused by Fusarium oxysporum f sp. lycopersici. Journal of Biopesticides, 3(1), 158-162.

de los Santos-Villalobos S, Barrera-Galicia G C, Miranda-Salcedo M A, Peña-Cabriales J J. (2012). Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World Journal of Microbiology and Biotechnology, 28(8), 2615-2623. https://doi.org/10.1007/s11274-012-1071-9

FAOSTAT (2017). Production – Crops – Area harvested/ Production quantity – Tomatoes – 2014, FAO Statistics online database, Food and Agriculture Organization, Rome, www.fao.org/faostat/en (accessed 22 Sept. 2017).

Henry A, Kleinman P J, Lynch J P. (2009). Phosphorus runoff from a phosphorus deficient soil under common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) genotypes with contrasting root architecture. Plant and Soil, 317(1-2), 1-16. https://doi.org/10.1007/s11104-008-9784-0

Herrera-Téllez V I, Cruz-Olmedo A K, Plasencia J, Gavilanes-Ruíz M, Arce-Cervantes O, Hernández-León S, Saucedo-García M. (2019). The protective eEffect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. International Journal of Molecular Sciences, 20(8), 2007. https://doi.org/10.3390/ijms20082007

Houssien A A, Ahmed S M, Ismail A. A. (2010). Activation of tomato plant defense response against Fusarium wilt disease using Trichoderma harzianum and salicylic acid under greenhouse conditions. Research Journal of Agriculture and Biological Sciences, 6(3), 328-338.

Kloepper J W, Wei G, Tuzun S. (1992). Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. In Biological control of plant diseases (pp. 185-191). Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9468-7_24

Mahato S, Bhuju S, Shrestha J. (2018). Effect of Trichoderma viride as biofertilizer on growth and yield of wheat. Malays Journal of Sustainable Agriculture, 2(2), 1-5. https://doi.org/10.26480/mjsa.02.2018.01.05

Morkunas I, Gmerek J. (2007). The possible involvement of peroxidase in defense of yellow lupin embryos axes against Fusarium oxysporum. Journal of Plant Physiology, 164(6), 497–506. https://doi.org/10.1016/j.jplph.2005.11.005

Malandrakis A, Daskalaki E R, Skiada V, Papadopoulou K K, Kavroulakis N. (2018). A Fusarium solani endophyte vs fungicides: Compatibility in a Fusarium oxysporum f. sp. radicis-lycopersici–tomato pathosystem. Fungal Biology, 122(12), 1215-1221. https://doi.org/10.1016/j.funbio.2018.10.003

Morsy E M, Abdel-Kawi K A, Khalil M N A. (2009). Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents gainst Fusarium solani on tomato plants. Egyptian Journal of Phytopathology, 37, 47-57.

Ojha S, Chatterjee N. (2012). Induction of resistance in tomato plants against Fusarium oxysporum f. sp. lycopersici mediated through salicylic acid and Trichoderma harzianum. Journal of Plant Protection Research, 52(2), 220-225. https://doi.org/10.2478/v10045-012-0034-3

Otadoh J, Okoth S, Ochanda J, Kahindi J. (2010). Assessment of Trichoderma isolates for virulence efficacy on Fusarium oxysporum f. sp. phaseoli. Tropical and Subtropical Agroecosystems, 13(1), 99-107.

Perello A, Monaco C, Simon M R, Sisterna M, Dalbello G. (2003). Biocontrol efficacy of Trichoderma isolates for tar spot of wheat in Argentina. Crop Protection, 22(7), 1099–1106. https://doi.org/10.1016/S0261-2194(03)00143-1

Portal N, Soler A, Alphonsine P A M, Borras‐Hidalgo O, Portieles R, Peña‐Rodriguez L M, Yanes E, Herrera L, Solano J, Ribadeneira C, Walton J D. (2018). Nonspecific toxins as components of a host‐specific culture filtrate from Fusarium oxysporum f. sp. cubense race 1. Plant Pathology, 67(2), 467-476. https://doi.org/10.1111/ppa.12736

Pradeep T, Jambhale N D. (2002). Relationship between phenolics, polyphenol oxidase and peroxidases and resistance to powdery mildew in Zizhyphus. Indian Phytopathology, 55(2), 195-196.

Rahman M A, Begum M F, Alam M F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37(4), 277-285. https://doi.org/10.4489/MYCO.2009.37.4.277

Ramdoss N. (1991). Studies on the epidemiology, pathophysiology and management of Thanjavur wilt of coconut (Doctoral dissertation, Tamil Nadu Agricultural University; Coimbatore).

Rashid, T. S., Sijam, K., Awla, H. K., Saud, H. M., & Kadir, J. (2016). Pathogenicity assay and molecular identification of fungi and bacteria associated with diseases of tomato in Malaysia. American Journal of Plant Sciences, 7(6), 949-957. https://doi.org/10.4236/ajps.2016.76090

Silva R N, Monteiro V N, Steindorff A S, Gomes E V, Noronha E F, Ulhoa C J. (2019). Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biology, 123(8), 565-583. https://doi.org/10.1016/j.funbio.2019.06.010

Sreedevi B, Devi M C, Saigopal D V R. (2011). Induction of defense enzymes in Trichoderma harzianum treated groundnut plants against Macrophomina phaseolina. Journal of Biological Control, 25(1), 33-39.

Verma M, Brar S K, Tyagi R D, Surampalli R Y, Valero J R. (2007). Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemical Engineering Journal, 37(1), 1-20. https://doi.org/10.1016/j.bej.2007.05.012

Vidhyasekaran P. (2004). Concise encyclopedia of plant pathology. CRC Press. https://doi.org/10.1201/9781482277951




DOI: http://dx.doi.org/10.14720/aas.2021.117.1.1622

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941