Učinek foliarnega dodajanja silicija na fotokemično in antioksidacijsko učinkovitost ter rast koruze v razmerah hladnega stresa

Ghader HABIBI

Povzetek


Nizka temperatura je eden izmed glavnih neugodnih klimatskih dejavnikov, ki zavira rast rastlin in trajnostni razvoj kmetijstva.V takšnih klimatskih razmerah lahko silicij oblaži abiotski stress vključno z učinki nizke temperature. V tej raziskavi je bila preučevana vloga foliarnega dodajanja Si (10 mM kalijevega metasilikata) pri povečevanju odpornosti koruze (Zea mays ‘Fajr’) na hladni stres. Stres zaradi nizkih temperature je značilno zmanjšal rast in vsebnost vode v rastlinah, kar je dodajanje Si oblažilo. Dodatek silicija je sprožil v koruzi značilne pozitivne učinke v kopičenju prostih amino kislin in v zmanjšanju nekrotičnosti listov. Zmanjšanje v fotokemični učinkovitosti PS II (Fv/Fm) je bilo povratno med okrevanjem, vendar ne pri rastlinah, ki niso bile tretirane s silicijem. To bi lahko razložili s povečanjem vsebnosti zaščitnih pigmentov karotenoidov in antocianinov, kar vodi v zaščito PSII pred poškodbami. Dodatno so analize prehodne fluorescence klorofila a (OJIP) odkrile, da je dodatek Si zmanjšal učinek poškodb zaradi hlada na fotosintetski elektronski transport (PIabs in Fv/Fm) preko boljšega prestrezanja ekscitacijske energije (TR0/CS) in boljšega elektronskega transporta (ET0/CS) na presek ekscitiranega lista. Hladni stres je povzročil poškodbe membran, kar se je odrazilo v povečani koncentraciji malondialdehida. V rastlinah tretiranih s Si koncentracija malondialdehide ni dosegla ravni rastlin, izpostavljenih hladnem stresu. Koncentracije reduciranega glutationa in askorbata so bile večje v rastlinah, tretiranih s Si v razmerah hladnega stresa v primerjavi s tistimi, ki s silicijem niso bile tretirane. Ti rezultati nakazujejo, da bi lahko silicij povečal odpornost na hladni stres pri koruzi z izboljšanjem prirastka biomase, vzdrževanjem visoke ravni glutationa, askorbinske kisline, beljakovin, zaščitnih pigmentov in v povečevanju fotokemičnih reakcij. Raziskava nakazuje, da foliarno dodajanje silicija povečuje sposobnost okrevanja iz od hlada nastalih poškodb.

Ključne besede


hladni stres, peroksidacija lipidov, nefotokemična pretvorba svetlobe, silicij, Zea mays

Celotno besedilo:

PDF (English)

Literatura


Battal, P., Erez, M.E., Turker, M., Berber, I. 2008. Molecular and physiological changes in maize (Zea mays) induced by exogenous NAA, ABA and MeJa during cold stress. Annales Botanici Fennici. 45: 173–185. DOI: 10.5735/085.045.0302

Bradford, M.M. 1967. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254. DOI: 10.1016/0003-2697(76)90527-3

Broadley, M., Brown, P., Cakmak, I., Ma, J.F., Rengel, Z. and Zhao, F.P. 2011. Beneficial Elements. In: "Marschner's Mineral Nutrition of Higher Plants" (Ed.): Marschner, P.. UK, Academic Press, London. PP. 249–269.

Baker, N.R. and Rosenqvist, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot., 55: 1607–1621. DOI: 10.1093/jxb/erh196

Balouchi, H.R. 2010. Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. Int. J. Biol. Life Sci., 6: 56–66.

Dallagnol, L.J., Rodrigues, F.A., Tanaka, F.A.O., Amorim, L. and Camargo, L.E.A. 2012. Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathol., 61: 323–330. DOI: 10.1111/j.1365-3059.2011.02518.x

Fu, J., Sun, Y., Chu, X., Xu, Y. and Hu, T. 2014. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress. PLoS One 9: e107152. DOI: 10.1371/journal.pone.0107152

Guntzer, F., Keller, C. and Meunier, J.D. 2011. Benefits of plant Si for crops: a review. Agron. Sustain. Dev., 32: 201–213. DOI: 10.1007/s13593-011-0039-8

Habibi, G. and Hajiboland, R. 2013. Alleviation of drought stress by Si supplementation in maize (Pistacia vera L.) plants. Folia Hort., 25: 21–29.

Habibi, G. and Hajiboland, R. 2012. Comparison of photosynthesis and antioxidative protection in Sedum album and Sedum stoloniferum (Crassulaceae) under water stress. Photosynthetica, 50: 508–518. DOI: 10.1007/s11099-012-0066-y

Habibi, G. 2014a. Role of Trace Elements in Alleviating Environmental Sress. In: "Emerging Technologies and Management of Crop Stress Tolerance Biological Techniques" (Eds.): Ahmad, P. and Rasool, S. Elsevier, Boston, USA, PP. 313–331.

Habibi, G. 2014b. Silicon supplementation improves drought tolerance in canola plants. Russian J. Plant Physiol., 61: 784–791. DOI: 10.1134/S1021443714060077

Huang, H.Y., Zhang, Q., Zhao, L.P., Feng, J.N. and Peng, C.L. 2010. Does lutein play a key role in the protection of photosynthetic apparatus in Arabidopsis under severe oxidative stress? Pak. J. Bot., 42: 2765–2774.

Huber, S.C., Huber, J.L., Campbell, W.H. and Redinbaugh, M.G. 1992. Apparent dependence of the light activation of nitrate reductase and sucrose phosphate synthase activities in spinach leaves on protein synthesis. Plant Cell Physiol., 33: 639–646.

Hwang, M. and Ederer, G.M. 1975. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. J. Clin. Microbiol., 1: 114–115.

Irigoyen, J.J., Juan, J.P.D. and Diaz, M.S. 1996. Drought enhances freezing tolerance in a freezing-sensitive maize (Zea mays). New Phytol., 134: 53–59. DOI: 10.1111/j.1469-8137.1996.tb01145.x

Ivanov, A.G., Sane, P.V., Krol, M., Gray, G.R., Balseris, A., Savitch, L.V., Oquist, G. and Hüner, N.P.A. 2006. Acclimation to temperature and irradiance modulates PSII charge recombination. FEBS Lett, 580: 2797-2802. DOI: 10.1016/j.febslet.2006.04.018

Jaiswal, P.C. 2004. Soil, Plant and Water Analysis, (Ed.): Kalyani Publishers, New Delhi.

Krall, J.P. and Edwards, G.E. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant., 86: 180–187. DOI: 10.1111/j.1399-3054.1992.tb01328.x

Jiao-jing, L., Shao-hang, L., Pei-lei, X., Xiu-juan, W. and Ji-gang, B. 2009. Effects of exogenous Si on the activities of antioxidant enzymes and lipid peroxidation in freezing-stressed cucumber leaves. Agric. Sci. China, 8: 1075–1086. DOI: 10.1016/S1671-2927(08)60315-6

Krasensky, J. and Jonak, C. 2012. Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot., 63: 1593–1608. DOI: 10.1093/jxb/err460

Liang, Y., Zhuc, J., Li, Z., Chua, G., Dingc, Y., Zhangc, J. and Sun, W. 2008. Role of Si in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ. Exp. Bot., 64: 286–294. DOI: 10.1016/j.envexpbot.2008.06.005

Lichtenthaler, H.K. and Wellburn, A.R. 1985. Determination of total carotenoids and chlorophylls a and b of leaf in dfferent solvents. Biochem. Soc. Trans., 11: 591–592. DOI: 10.1042/bst0110591

Liu, J., Lin, S., Xu, P., Wang, X. and Bai, J. 2009. Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agric. Sci. China, 8: 1075–1086. DOI: 10.1016/S1671-2927(08)60315-6

Liu, P., Yin, L., Deng, X., Wang, S., Tanaka, K. and Zhang, S. 2014. Aquaporin-mediated increase in root hydraulic conductance is involved in Si-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J. Exp. Bot., 65: 4747–4756. DOI: 10.1093/jxb/eru220

Magné, C., Saladin, G., Clément, C. 2006. Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera. Chemosphere, 62: 650–657. DOI: 10.1016/j.chemosphere.2005.04.119

Marczak, L., Kachlicki, P., Kozniewski, P., Skirycz, A., Krajewski, P. and Stobiecki, M. 2008. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry monitoring of anthocyanins in extracts from Arabidopsis thaliana leaves. Rapid Commun. Mass. Sp., 22: 3949–3956. DOI: 10.1002/rcm.3819

Maxwell, K. and Johnson, G.N. 2000. Chlorophyll fluorescence – a practical guide. J. Exp. Bot., 51: 659–668. DOI: 10.1093/jexbot/51.345.659

Oxborough, K. 2004. Using Chlorophyll a Fluorescence Imaging to Monitor Photosynthetic Performance. In: "Chlorophyll a Fluorescence, A Signature of Photosynthesis" (Ed.): Papageorgiou, G.C. Springer, Dordrecht, PP. 409–428. DOI: 10.1007/978-1-4020-3218-9_15

Saqib, M., Zörb, C. and Schubert, S. 2008. Si-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Func. Plant Biol., 35: 633–639.

Singh, N., Ma, L.Q., Srivastava, M. and Rathinasabapathi, B. 2006. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci., 170: 274–282. DOI: 10.1016/j.plantsci.2005.08.013

Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A.E., Kobayashi, S., Kawamura, Y., Tanaka, K. and Inanaga, S. 2011. Effect of Si application on sorghum root responses to water stress. J. Plant Nutr., 34: 71–82. DOI: 10.1080/01904167.2011.531360

Strasser, B.J., Strasser, R.J. 1995. Measuring fast fluorescence transients to address environmental questions: The JIP-test. In: Mathis, P. (Ed.), Photosynthesis: From Light to Biosphere, vol. V. Kluwer Academic Publishers, The Netherlands, pp. 977-980. DOI: 10.1007/978-94-009-0173-5_1142

Strasser, R.J., Srivastava, A., Tsimilli-Michael, M. 2000. The fluorescent transient as a tool to characterise and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P. (Eds.), Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis, London, pp. 445-483.

Strasser, R.J., Tsimilli-Michael, M., Srivastava, A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou, G.C., Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, pp. 321-362. DOI: 10.1007/978-1-4020-3218-9_12

Suzuki, N., Koussevitzky, S., Mittler, R. and Miller, G. 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ., 35: 259–270. DOI: 10.1111/j.1365-3040.2011.02336.x

Wagner, G.J. 1979. Content and vacuole/extra vacuole distribution of neutral sugars free amino acids, and anthocyanins in protoplast. Plant Physiol., 64: 88–93. DOI: 10.1104/pp.64.1.88

Waśkiewicz, A., Beszterda, M. and Goliński, P. 2014. Nonenzymatic Antioxidants in Plants. In: "Antioxidant Networks and Signaling Oxidative Damage to Plants" (Eds.): Ahmad, P. Elsevier, USA, PP. 201–234. DOI: 10.1016/b978-0-12-799963-0.00007-1

Yin, L., Wang, S., Li, J., Tanaka, K. and Oka, M. 2013. Application of Si improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol. Plant., 35: 3099–3107. DOI: 10.1007/s11738-013-1343-5

Zhang, Q., Zhang, J.Z., Chow, W.S., Sun, L.L., Chen, J.W., Chen, Y.J. and Peng, C.L. 2011. The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Photosynthetica, 49: 201–208. DOI: 10.1007/s11099-011-0012-4




DOI: http://dx.doi.org/10.14720/aas.2016.107.1.04

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2016

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941