Ostanki fitofarmacevtskih sredstev v cvetnem prahu - validacija multirezidualne metode s plinsko kromatografijo sklopljeno z masno spektrometrijo in preiskava cvetnega prahu iz Slovenije

Helena BAŠA ČESNIK

Povzetek


Uvedli in validirali smo novo analizno metodo za določanje ostankov fitofarmacevtskih sredstev iz okolja. Ekstrakcijo smo izvedli z acetonitrilom, čiščenje z Supelclean Ultra 2400 koloncami za ekstrakcijo na trdni fazi, ki vsebujejo Grapsphere, anionski izmenjevalnik, C18 in sorbent na osnovi cirkonija, in določitev s plinsko kromatografijo sklopljeno z masno spektrometrijo. Metodo smo uporabili v praksi. V 30 vzorcih cvetnega prahu slovenskih čebelarjev iz vseh 12 statističnih regij Slovenije smo določali skupno 49 aktivnih spojin (pesticidov). Edina najdena aktivna snov je bil fungicid azoksistrobin in sicer le v enem vzorcu, pri koncentraciji < 0,05 mg kg-1 Iskanih aktivnih snovi nismo detektirali v 96,7 % analiziranih vzorcev. Z oceno tveganja smo ugotovili, da analizirani vzorci cvetnega prahu ne predstavljajo tveganja za potrošnika. Rezultate smo primerjali z literaturnimi podatki in ugotovili, da je cvetni prah v Sloveniji vseboval manjše število aktivnih spojin pri v glavnem nižjih vsebnostih fitofarmacevtskih ostankov kot cvetni prah iz nekaterih Evropskih dtžav.

Ključne besede


cvetni prah; GC-MS; ostanki fitofarmacevtskih sredstev; multirezidualna metoda

Celotno besedilo:

PDF (English)

Literatura


Alder L., Hill A., Holland P.T., Lantos J., Lee S.M., MacNeil J.D., O'Rangers J., van Zoonen P., Ambrus A. (2000). Guidelines for single-laboratory validation of analytical methods for trace-level concentrations of organic chemicals, Principles and practices of method validation (ed.: A. Fajgelj, A. Ambrus). The Royal Society of Chemistry, pp. 179 – 252.

Anastassiades M., Lehotay S. J., Štajnbaher D., Schenck F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and »dispersive solid-phase extraction« for the determination of pesticide residues in produce. Journal of AOAC

International, 86, 412-431. https://doi.org/10.1093/jaoac/86.2.412

Cabrera de Oliveira R. C., Queiroz S. C. do N., da Luz C. F. P., Porto R. S., Rath S. (2016). Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere, 163,525-534. https://doi.org/10.1016/j.chemosphere.2016.08.022

Calatayud-Vernich P., Calatayud F., Simó E., Picó Y. (2018). Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 241, 106-114. https://doi.org/10.1016/j.envpol.2018.05.062

Crenna E., Jolliet O., Collina E., Sala S., Fantke P. (2020). Characterizing honey bee exposure and effects from pesticides for chemical prioritization and life cycle assessment. Environment International, 138, 105642. https://doi.org/10.1016/j.envint.2020.105642

David A., Botías C., Abdul-sada A., Nicholls E., Rotheray E. L., Hill E. M., Goulson D. (2016). Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environment International, 88, 169-178. https://doi.org/10.1016/j.envint.2015.12.011

Eckert J.E. (1933). The flight range of the honeybee. Journal of Agricultural Research, 47, 257-285.

García-Valcárcel A. I., Martínez-Ferrer M. T., Campos-Rivela J. M., Guil M. D. H. (2019). Analysis of pesticide residues in honeybee Ž(Apis mellifera L.) and in corbicular pollen. Exposure in citrus orchard with an integrated pest management system. Talanta, 204, 153-162. https://doi.org/10.1016/j.talanta.2019.05.106

Hakme E., Lozano A., Gómez-Ramos M. M., Hernando M. D., Fernández-Alba A. R. (2017). Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry. Chemosphere, 184, 1310-1319. https://doi.org/10.1016/j.chemosphere.2017.06.089.

ISO 5725. (1994). Accuracy (trueness and precision) of measurement methods and results - Part2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, pp. 1-42.

Kasiotis K. M., Anagnostopoulos C., Anastasiadou P., Machera K. (2014). Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. Sciience of the Total Environment, 485-486, 633-642. https://doi.org/10.1016/j.scitotenv.2014.03.042

Lehotay S. J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90, 485-520. https://doi.org/10.1093/jaoac/90.2.485

Li Q.-Q., Wang K., Marcucci M. C., Sawaya A. C. H. F., Hu L., Xue X.-F., Wu L.-M. (2018). Nutrient-rich bee pollen: A treasure trove of active natural metabolites. Journal of Functional Foods, 49, 472-484. https://doi.org/10.1016/j.jff.2018.09.008

Li Y., Kelley R. A., Anderson T. D., Lydy M. J. (2015). Development and comparison of two multi-residue methods for the analysis of select pesticides in honey bees, pollen, and wax by gas chromatography-quadropole mass spectrometry. Talanta, 140, 81-87. https://doi.org/10.1016/j.talanta.2015.03.031

Lozano A., Rajski Ł., Uclés S., Belmonte-Valles N., Mezcua M., Fernández-Alba A. R. (2014). Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry. Talanta, 118, 68-83. https://doi.org/10.1016/j.talanta.2013.09.053

Mullin C. A., Frazier M., Frazier J. L., Ashcraft S., Simonds R., vanEngelsdorp D., Pettis J. S. (2010). High levels of miticides and agrochemicals in North American Apiaries: implications for honey bee health. PLOS one, 5, e9754. https://doi.org/10.1371/journal.pone.0009754

Nakajima Y., Tsuruma K., Shimazawa M., Mishima S., Hara H. (2009). Comparison of bee products based on assays of antioxidant capacities. BioMed Central, 9, 4. https://doi.org/10.1186/1472-6882-9-4

Raimets R., Bontšutšnaja A., Bartkevics V., Pugajeva I., Kaart T., Puusepp L., Pihlik P., Keres I., Viinalass H., Mänd M., Karise R. (2020). Pesticide residues in beehive matrices are dependent on collection time and matrix type but independent of proportion of foraged oilseed rape and agricultural land in foraging territory. Chemosphere, 238, 124555. https://doi.org/10.1016/j.chemosphere.2019.124555

Salles J., Cardinault N., Patrae V., Berry A., Giraudet C., Collin M.-L., Chanet A., Tagliaferri C., Denis P., Pouyet C., Boirie Y., Walrand S. (2014). Bee pollen improves muscle protein and energy metabolism in malnourished old rats through interfering with the Mtor signaling pathway and mitochondrial activity. Nutrients, 6, 5500-5516. https://doi.org/10.3390/nu6125500

SANTE/11813/2017. Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed. DG SANTE, European Comission, 2017.

Stenerson K. K, (2018). Analysis of pesticides in turmeric powder by LC-MS/MS and GC-MS/MS after cleanup with a novel dual-layer SPE cartridge. Supelco Analytical Products, Analytix reporter, 1, 2018.

Thakur M., Nanda V. (2020). Composition and functionality of bee pollen: A review. Trends in Food Science & Technology, 98, 82-106. https://doi.org/10.1016/j.tifs.2020.02.001

Tosi S., Costa C., Vesco U., Quaglia G., Guido G. (2018). A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of the Total Environment, 615, 208-218. https://doi.org/10.1016/j.scitotenv.2017.09.226

Vázquez P. P., Lozano A., Uclés S., Ramos M. M. G., Fernández-Alba A. R. (2015). A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 1426, 161-173. https://doi.org/10.1016/j.chroma.2015.11.081

Wang P.-C., Lee R.-J., Chen C.-Y., Chou C.-C., Lee M.-R. (2012). Determination of cyromazine and melamine in chiken eggs using quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction coupled with liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 752, 78-86. https://doi.org/10.1016/j.aca.2012.09.029

Wiest L., Buleté A., Giroud B., Fratta C., Amic S., Lambert O., Pouliquen H., Arnaudguilhem C. (2011). Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extractuion procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. Journal of Chromatography A, 1218, 5743-5756. https://doi.org/10.1016/j.chroma.2011.06.079




DOI: http://dx.doi.org/10.14720/aas.2021.117.2.1822

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941