Vpliv nanodelcev srebra (Ag) na fiziološke in biokemične lastnosti kalusa dveh vrst materine dušice (Thymus sp.) in vrste Zataria multiflora Boiss.

Nima MOSAVAT, Maryam YOUSEFIFARD, Pooran GOLKAR, Rabia JAVED

Povzetek


Vrste iz rodu materine dušice (Thymus sp.) imajo velik pomen v prozivodnji hrane in zdravil. V raziskavi je bil preučevan potencialni učinek nanodelcev srebra kot eliciatorja na rast kalusa, tvorbo karvakrola in timola pri vrsti Zataria multiflora in treh vrstah materine dušice. Najprej je bil na Murashige in Skoog (MS) gojišču, ki je vsebovalo 2 mg l-1  2,4-D in 1 mg l-1 kinetina, vzgojen kalus. Potem je bil preučevan učinek dveh različnih koncentracij srebrovih nanodelcev (4 in 8 mg l-1) na rast kalusa in in tvorbo sekundarnih metabolitov. Rezultati, pridobljeni z visokotlačno tekočinsko kromatografijo (HPLC) so pokazali, da je bila po uporabi 8 mg l-1 srebrovih nanodelcev kot iliciatorjev dosežena značilno največja rast kalusa (CGR) (0,02 mm dan-1), največja sveža masa kalusa (CM) (0,99 g) in največja vsebnost karvakrola (0,68 mg l-1) in timola (11,09 mg l-1). V primerjavi različnih vrst materine dušice je bila dosežena največja vsebnost karvakrola in timola pri vrstah T. kotschyanus Boiss. & Hohen in T. daenesis Čelak pri koncentraciji srebrovih nanodelcev 8 mg l-1. Očitno je, da je stimulacijski učinek nanodelcev odvisen od doze. Izsledke raziskave bi lahko komercialno uporabili za povečanje tvorbe zdravilnih spojin pri različlnih vrstah materine dušice.


Ključne besede


Ag nanodelci; vrste iz rodu Thymus; Zataria multiflora; kalus; karvakrol; timol

Celotno besedilo:

PDF (English)

Literatura


Afshar, B., & Golkar, P. (2016). Mucilage synthesis by in vitro cell culture in different species of Alyssum. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 97(2), 79–86. https://doi.org/10.5114/bta.2016.60778

Ahmad, M. A., Javed, R., Adeel, M., Rizwan, M., Ao, Q., & Yang, Y. (2020). Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of candyleaf (Stevia rebaudiana). Molecules, 25(6), 1356. https://doi.org/10.3390/molecules25061356

Ajungla, L., Patil, P. P., Barmukh, R. B., & Nikam, T. D. (2009). Influence of biotic and abiotic elicitors on accumulation of hyoscyamine and scopolamine in root cultures of Datura metel L. Indian Journal of Biotechnology, 8(3), 317–322.

Alharby, H. F., Metwali, E. M. R., Fuller, M. P., & Aldhebiani, A. Y. (2016). Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum mill.) under salt stress. Archives of Biological Sciences, 68(4), 723–735. https://doi.org/10.2298/ABS151105017A

Ali, A., Mohammad, S., Khan, M. A., Raja, N. I., Arif, M., Kamil, A., & Mashwani, Z. ur R. (2019). Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 715–724. https://doi.org/10.1080/21691401.2019.1577884

Al-Jibouri, A. M. J., Abd, A. S., Majeed, D. M., & Ismail, E. N. (2012). Influence of abiotic elicitors on accumulation of thymol in callus cultures of Origanum vulgare L. Journal of Life Sciences, 6(10), 1094.

Asadollahei, M. V., Yousefifard, M., Tabatabaeian, J., Nekonam, M. S., & Mahdavi, S. M. E. (2022). Effect of elicitors on secondary metabolites biosynthesis in Zataria multiflora Boiss. Industrial Crops and Products, 181, 114789. https://doi.org/10.1016/j.indcrop.2022.114789

Barbasz, A., Kreczmer, B., & Oćwieja, M. (2016). Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiologiae Plantarum, 38(3), 1–11. https://doi.org/10.1007/s11738-016-2092-z

Castro, A. H. F., Braga, K. de Q., de Sousa, F. M., Coimbra, M. C., & Chagas, R. C. R. (2016). Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). Revista Ciencia Agronomica, 47(1), 143–151. https://doi.org/10.5935/1806-6690.20160017

Dykman, L. A., & Shchyogolev, S. Y. (2017). Interactions of plants with noble metal nanoparticles. Agricultural Biology, 52(1), 13. https://doi.org/10.15389/agrobiology.2017.1.13eng

Elumalai, E. K., Prasad, T. N. V. K. V., Hemachandran, J., Viviyan Therasa, S., Thirumalai, T., & David, E. (2010). Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. Journal of Pharmaceutical Sciences and Research, 2(9), 549–554.

Ewais, E. ., Desouky, S., & Elshazly, E. . (2015). Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. Nanoscience and Nanotechnology, 5(3), 45–56.

Fazal, H., Abbasi, B. H., Ahmad, N., & Ali, M. (2016). Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Applied Biochemistry and Biotechnology, 180(6), 1076–1092. https://doi.org/10.1007/s12010-016-2153-1

Fazal, H., Abbasi, B. H., Ahmad, N., Ali, M., Shujait Ali, S., Khan, A., & Wei, D. Q. (2019). Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 2553–2561. https://doi.org/10.1080/21691401.2019.1625913

Golkar, P., Bakhtiari, M.A. & Bazarganipour, M., (2021). The effects of nanographene oxide on the morpho-biochemical traits and antioxidant activity of Lepidium sativum L. under in vitro salinity stress. Scientia Horticulturae, 288, p.110301. https://doi.org/10.1016/j.scienta.2021.110301

Goswami, L., Kim, K. H., Deep, A., Das, P., Bhattacharya, S. S., Kumar, S., & Adelodun, A. A. (2017). Engineered nano particles: Nature, behavior, and effect on the environment. Journal of Environmental Management, 196, 297–315. https://doi.org/10.1016/j.jenvman.2017.01.011

Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. K. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25(3), 443–447. https://doi.org/10.1016/j.jsps.2016.09.012

Javed, R., Ahmed, M., Haq, I. ul, Nisa, S., & Zia, M. (2017). PVP and PEG doped CuO nanoparticles are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Materials Science and Engineering C, 79, 108–115. https://doi.org/10.1016/j.msec.2017.05.006

Javed, R., Usman, M., Tabassum, S., & Zia, M. (2016). Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles. Applied Surface Science, 386, 319–326. https://doi.org/10.1016/j.apsusc.2016.06.042

Javed, R., Yucesan, B., Zia, M., & Gurel, E. (2018). Elicitation of secondary metabolites in callus cltures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech, 20(2), 194–201. https://doi.org/10.1007/s12355-017-0539-1

Kianersi, F., Pour-Aboughadareh, A., Majdi, M., & Poczai, P. (2021). Effect of methyl jasmonate on thymol, carvacrol, phytochemical accumulation, and expression of key genes involved in thymol/carvacrol biosynthetic pathway in some Iranian Thyme Species. International jJournal of Molecular Sciences, 22(20), 11124. https://doi.org/10.3390/ijms222011124

Kim, D. H., Gopal, J., & Sivanesan, I. (2017). Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC advances, 7(58), 36492-36505. https://doi.org/10.1039/C7RA07025J

Kim, D., Jeong, S., & Moon, J. (2006). Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology, 17(16), 4019–4024. https://doi.org/10.1088/0957-4484/17/16/004

Kokina, I., Gerbreders, V., Sledevskis, E., & Bulanovs, A. (2013). Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. Journal of Biotechnology, 165(2), 127–132. https://doi.org/10.1016/j.jbiotec.2013.03.011

Lala, S. (2021). Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnology, 15(1), 28-57. https://doi.org/10.1049/nbt2.12005

Mandeh, M., Omidi, M., & Rahaie, M. (2012). In Vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research, 150(1–3), 376–380. https://doi.org/10.1007/s12011-012-9480-z

Marslin, G., Sheeba, C. J., & Franklin, G. (2017). Nanoparticles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science, 8, 832. https://doi.org/10.3389/fpls.2017.00832

Mathela, C. S., Singh, K. K., & Gupta, V. K. (2010). Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Poloniae Pharmaceutica - Drug Research, 67(4), 375–380.

Miraj, S., & Kiani, S. (2016). Study of pharmacological effect of Ocimum basilicum: A review. Der Pharmacia Lettre, 8(9), 315–320.

Mosavat, N., Golkar, P., Yousefifard, M., & Javed, R. (2019). Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress. Biotechnology and Applied Biochemistry, 66(3), 316–322. https://doi.org/10.1002/bab.1727

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Agsays with Tohaoco Tissue Cultures. Physiologia Plantarum, 15(3), 474–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613

Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: A critical review. Frontiers in Chemistry, 5, 78. https://doi.org/10.3389/fchem.2017.00078

Rechinger, K. (1982). Flora Iranica, Vol. 150. IC Hedge - Graz: Akademische Druck Und Verlagsanstalt, 150, 543–544.

Sadak, M. S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bulletin of the National Research Centre, 43(1), 1-6. https://doi.org/10.1186/s42269-019-0077-y

Sajed, H., Sahebkar, A., & Iranshahi, M. (2013). Zataria multiflora Boiss. (Shirazi thyme) - An ancient condiment with modern pharmaceutical uses. Journal of Ethnopharmacology, 145(3), 686–698. https://doi.org/10.1016/j.jep.2012.12.018

Sanzari, I., Leone, A., & Ambrosone, A. (2019). Nanotechnology in plant science: to make a long story short. Frontiers in Bioengineering and Biotechnology, 7, 120. https://doi.org/10.3389/fbioe.2019.00120

Shakya, P., Marslin, G., Siram, K., Beerhues, L., & Franklin, G. (2019). Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. Journal of Pharmacy and Pharmacology, 71(1), 70–82. https://doi.org/10.1111/jphp.12743

Sharafi, E., Fotokian, M. H., & Loo, H. (2013). Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of John’swort (Hypericum perforatum L). Journal of Medicinal Plants and By-products, 2(2).

Sharma, P., Bhatt, D., Zaidi, M. G. H., Saradhi, P. P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8), 2225–2233. https://doi.org/10.1007/s12010-012-9759-8

Syu, Y. yu, Hung, J. H., Chen, J. C., & Chuang, H. wen. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83, 57–64. https://doi.org/10.1016/j.plaphy.2014.07.010

Zafar, H., Ali, A., Ali, J. S., Haq, I. U., & Zia, M. (2016). Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Frontiers in Plant Science, 7, 535. https://doi.org/10.3389/fpls.2016.00535

Zaka, M., Abbasi, B. H., Rahman, L.-U., Shah, A., & Zia, M. (2016). Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa. IET Nanobiotechnology, 10(3), 1–7. https://doi.org/10.1049/iet-nbt.2015.0039

Zarshenas, M. M., & Krenn, L. (2015). A critical overview on Thymus daenensis Celak.: phytochemical and pharmacological investigations. Journal of Integrative Medicine, 13(2), 91–98. https://doi.org/10.1016/S2095-4964(15)60166-2

Zhao, J., Davis, L., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003

Zuverza-Mena, N., Martínez-Fernández, D., Du, W., Hernandez-Viezcas, J. A., Bonilla-Bird, N., López-Moreno, M. L., Gardea-Torresdey, J. L. (2017). Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiology and Biochemistry, 110, 236–264. https://doi.org/10.1016/j.plaphy.2016.05.037




DOI: http://dx.doi.org/10.14720/aas.2022.118.3.1873

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2022 Nima MOSAVAT, Maryam YOUSEFIFARD, Pooran GOLKAR, Rabia JAVED

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941