Možnost rabe slabo topnih snovi kot vir fosforja pri gojenju boba (Vicia faba L.) na apnenčastih tleh

Abd-Elmonem Mohamed ELGALA, Shaimaa Hassan ABD-ELRAHMAN

Povzetek


Na topnost fosforja (P) vplivajo številni dejavniki, še posebej v apnenčastih tleh. Namen te raziskave je bil izvesti poskus v laboratoriju in rastlinjaku za preučevanje učinkov fosfor sproščajočih snovi kot so kompost, huminska kislina (HA), citronska kislina, etilen diamin tetra ocetna kislina (EDTA) in rizobakterij (Bacillus megaterium var. phosphaticum) na topnost fosforja iz različnih virov kot so navaden superfosfat (OSP), fosfat v kamnini (RP) in tomaževa žlindra (BS). Preučevani so bili učinki teh obravnavanj na dostopnost fosforja v apnenčastih tleh v El-Nubaria, Egipt in privzem fosforja v bob (Vicia faba ‘Giza 843’). Rezultati so pokazali, da se topnost fosforja iz različnih virov razlikuje glede na njegovo sposobnost sproščanja v naslednjem vrstnem redu: OSP > RP > BS. Po dodatku agensov za topnost se je v tleh pojavil naslednji padajoči redosled razpoložljivega P: citronska kislina > EDTA > HA > kompost, za vse vire fosforja v obeh poskusih. Glede na interakcije med agensi za topljenje se je obravnavanje HA v kombinaciji z EDTA ali citronsko kislino izkazalo kot najboljše, z največjo koncentracijo topnega P v tleh in najboljšo rastjo rastlin. Dodatno se je vsebnost P povečala za okrog 5-6 krat pri vseh virih P v prisotnosti fosfor sproščajočih bakterij. Zdi se, da je je prisotnost precejšnih količin Mg, S, Fe, Mn, B in drugih elementov v tomaževi žlindri vplivala na pospešeno rast rastlin in povečanje pridelka, še posebej ob dodatku bakterij. Tomaževa žlindra bi se torej lahko uporabljala na apnečastih tleh in v peščenih tleh, ki jih označuje majhna vsebnost hranil.


Ključne besede


viri fosforja; tomaževa žlindra; organske snovi; helatirajoče snovi, razpoložljivost P; P raztapljajoče bakterije; apnenčasta tla; Vicia faba

Celotno besedilo:

PDF (English)

Literatura


Abd-Elrahman, Shaimaa H. (2016). Effect of unconventional phosphorus sources and phosphate solubilizing bacteria on fractions of phosphorus in a calcareous soil cultivated with wheat plants. International Journal of Plant and Soil Science, 12, 1-11. http://dx.doi.org/10.9734/IJPSS/2016/28375

Adugna, G. (2016). A review on impact of compost on soil properties, water use and crop productivity. Academic Research Journal of Agricultural Science and Research, 4, 93-104. http://dx.doi.org/10.14662/ARJASR2016.010

Afshan, S., Ali, Sh., Bharwana, S., Rizwan, M., Farid, M., & Abbas, F., et al. (2015). Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environmental Science and Pollution Research, 22, 11679-89. http://dx.doi.org/10.1007/s11356-015-4396-8

Amalraj, E.L.D., Maiyappan, S., & Peter, A.J. (2012). In vivo and In vitro studies of Bacillus megaterium var. phosphaticum on nutrient mobilization, antagonism and plant growth promoting traits. Journal of Ecobiotechnology, 4, 35-42.

Bing, L., Biao, T., Zhen, M., Hanchi, Ch., & Hongbo, L. (2019). Physical and chemical properties of steel slag and utilization technology of steel slag at home and abroad. IOP Conf. Series: Earth and Environmental Science, 242, 1-6. http://dx.doi.org/10.1088/17551315/242/3/032012

Bulut, S. (2013). Evaluation of yield and quality parameters of phosphorous-solubilizing and N-fixing bacteria inoculated in wheat (Triticum aestivum L.). Turkish Journal of Agriculture and Forestry, 37, 545-554. http://dx.doi.org/10.3906/tar-1212-96

Cakmakci, R., Kantar, F., & Algur, F. (1999). Sugar beet and barley yields in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. Journal of Plant Nutrition and Soil Science, 162, 437-442. https://doi.org/10.1002/(SICI)1522-2624(199908)162:4%3C437::AID-JPLN437%3E3.0.CO;2-W

Campitelli, P.A., Velasco, M.I., & Ceppi, S.B. (2003). Charge development and acid-base characteristics of soil and compost humic acids. Journal of the Chilean Chemical Society, 48(3). http://dx.doi.org/10.4067/S0717-97072003000300018

Chapman, H.D., & Pratt, P.F. (1961). Methods of Analysis for Soils, Plants, and Waters. Division of Agric. Sci. Berkeley, Univ. California, USA, pp. 150-152.

Doran, I., Akinci, C., & Yildirim, M. (2003). Effects of delta humate applied with different doses and methods on yield and yield components of diyarbakir-81 wheat cultivar. 5th Field Crops Congress, Diyarbakir, Turkey, 2, 530-534.

Drouillon, M., & Merckx, R. (2003). The role of citric acid as a phosphorus mobilization mechanism in highly P-fixing soils. Gayana Botanica, 60(1), 55-62. http://dx.doi.org/10.4067/S0717-66432003000100009

Elgala, A.M., & Amberger, A. (2017). Factors affecting solubilization of rock phosphates in soils. International Journal of Plant and Soil Science, 14, 1-8. http://dx.doi.org/10.9734/IJPSS/2017/28526

Elhag, R.S., Elgala, A.M., Elsharawy, M.O., & Eid, M.A. (2019).

Evaluate the effect of some factors affecting solubilization of phosphorus in rhizosphere. Arab Universities Journal of Agricultural Sciences, Ain Shams University, 27, 913-923. https://doi.org/10.21608/ajs.2019.43847

Fouda, K.F. (2017). Effect of phosphorus level and some growth regulators on productivity of faba bean (Vicia faba L.). Egyptian Journal of Soil Science, 57, 73-87. http://dx.doi.org/10.21608/ejss.2017.3593

Grover, R. (2003). Rock phosphate and phosphate solubilizing microbes as a source of nutrients for crops. M.Sc. Thesis, Patiala.

Hamed, M.H., & Gamal, M.M. (2014). Effect of incubation periods and some organic materials on phosphorus forms in calcareous soils. International Journal of Technology Enhancements and Emerging Engineering Research (IJTEEE), 2, 108-118.

Hopkins, B., & Ellsworth, J. (2005). Phosphorus availability with alkaline/ calcareous soil. Western Nutrient Management Conference, Vol. 6. Salt Lake City, UT, pp. 88-93.

Houassine, D., Latati, M., Rebouh, N.Y., & Gérard, F. (2020). Phosphorus acquisition processes in the field: Study of faba bean cultivated on calcareous soils in Algeria. Archives of Agronomy and Soil Science, 66, 168-181. https://doi.org/10.1080/03650340.2019.1605166

Huang, M., Zhu, Y., Li, Z., Huang, B., Luo, N., Liu, Ch., & Zeng, G. (2016). Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water, Air and Soil Pollution, 227-359. https://doi.org/10.1007/s11270-016-3068-8

Illmer, P., Barbato, A., & Schinner, F. (1995). Solubilization of hardly soluble AlPO4 with P- solubilizing microorganisms. Soil Biology and Biochemistry, 27, 260-270. https://doi.org/10.1016/0038-0717(94)00205-f

Kanwal, U., Ali, S., Shakoor, M.B., Farid, M., Hussain, S., & Yasmeen, T., et al. (2014). EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environmental Science and Pollution Research, 21, 9899-9910. https://doi.org/10.1007/s11356-014-3001-x

Klute, A. (1986). Methods of Soil Analysis, part I, 2nd ed. Madison, Wisconsin, USA. https://doi.org/10.2136/sssabookser5.1.2ed

Lee, Ch., Park, S., Hwang, H., Kim, M., Jung, H., & Luyima, D., et al. (2019). Effects of food waste compost on the shift of microbial community in water saturated and unsaturated soil condition. Applied Biological Chemistry, 62, 1-7. https://doi.org/10.1186/s13765-019-0445-1

Mihoub, A., Daddi Bouhoun, M., Asif, N., & Saker, M.L. (2016). Low-molecular weight organic acids improve plant availability of phosphorus in different textured calcareous soils. Archives of Agronomy and Soil Science, 63, 1023-1034. http://dx.doi.org/10.1080/03650340.2016.1249477

Mihoub, A., Daddi Bouhoun, M., & Naeem, A. (2018). Short-term effects of phosphate fertilizer enriched with low-molecular-weight organic acids on phosphorus release kinetics and its availability under calcareous conditions in arid region. Journal of Scientific Agriculture, 2, 66-70. http://dx.doi.org/10.25081/jsa.2018.v2.884

Mihoub, A., Amin, A.A., Asif, N., & Daddi Bouhoun, M. (2019) Improvement in phosphorus nutrition of wheat plants grown in a calcareous sandy soil by incorporating chemical phosphorus fertilizer with some selected organic substances. Acta Agriculturae Slovenica, 113(2), 263-272. https://doi.org/10.14720/aas.2019.113.2.7

Negim, O., Eloifi, B., Mench, M., Bes, C., Gaste, H., Motelica-Heino, M., & Le Coustumer, P. (2010). Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a Cu-contaminated soil. Journal of Soil and Sediment Contamination, 19, 174-187. https://doi.org/10.1080/15320380903548508

Ning, D., Liang, Y., Liu, Z., Xiao, J., & Duan, A. (2016). Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS ONE, 11, 1-15. https://doi.org/10.1371/journal.pone.0168163

Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of Soil Analysis, part II, 2nd ed. Wisconsin, USA.

Płaza, A., Rzążewska, E., & Gąsiorowska, B. (2021). Effect of Bacillus megaterium var. phosphaticum bacteria and L-Alpha proline amino acid on iron content in soil and Triticum aestivum L. plants in sustainable agriculture system. Agronomy, 11, 511. doi:10.3390/agronomy11030511

Razaq, M., Zhang, P., Shen, H., & Salahuddin (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE, 12, 1-13. https://doi.org/10.1371/journal.pone.0171321

Sahin, S., Karaman, M.R., & Gebologlu, N. (2014). The effect of humic acid application upon the phosphorus uptake of the tomato plant (Lycopersicum esculentum L.). Scientific Research and Essays, 9, 586-590. http://dx.doi.org/10.5897/SRE2014.581

SAS. (2000). Statistical analysis system, SAS User’s Guide: Statistics. SAS Institute Inc., Cary, USA.

Satisha, G., & Devarajan, L. (2005). Humic substances and their complexation with phosphorus and calcium during composting of press mud and other biodegradables. Communications in Soil Science and Plant Analysis, 36, 805-818. https://doi.org/10.1081/CSS-200049454

Saxena, A.K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D.J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128, 1583-1594. doi:10.1111/jam.14506

Soil Survey Staff. (2010). Keys to Soil Taxonomy (11th ed.). Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service, U.S. Government Printing Office.

Taiwo, A.M. (2011). Composting as a sustainable waste management technique in developing countries. Journal of Environmental Science and Technology, 4, 93-102. http://dx.doi.org/10.3923/jest.2011.93.102

Taskin, M.B., Kadioglu, Y.K., Sahin, O., Inal, A., & Gunes, A. (2019). Effect of acid modified biochar on the growth and essential and non-essential element content of bean, chickpea, soybean, and maize grown in calcareous soil. Communications in Soil Science and Plant Analysis, 50, 1604-1613. https://doi.org/10.1080/00103624.2019.1631326

Tsakiridis, P.E., Papadimitriou, G.D., Tsivilis, S., & Koroneos, C. (2008). Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials, 152, 805-811. https://doi.org/10.1016/j.jhazmat.2007.07.093

Watanabe, F.C., & Olsen, S.R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soils. Soil Science Society of America Proceedings, 29, 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x

Yildirim, I.Z., & Prezzi, M. (2011). Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering, 2011, 1-13. https://doi.org/10.1155/2011/463638




DOI: http://dx.doi.org/10.14720/aas.2021.117.3.1874

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941