UČINKI NANO DELCEV TiO2 IN SUŠNEGA STRESA NA IZBRANE MORFOLOŠKE IN FIZIOLOŠKE LASTNOSTI MOLDAVSKE KAČJEGLAVKE (Dracocephalum moldavica L.)
Povzetek
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Alaei, S.H., Melikyan, A., Kobraee, S., & Mahna, N. (2013). Effect of different soil moisture levels on morphological and physiological characteristics of Dracocephalum moldavica. Agricultural Communications,1: 23-26.
Ashraf, M., & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59:206-216. Doi: 10.1016/j.envexpbot.2005.12.006
Baghalian, K., Abdoshah, S.h., Khalighi-Sigaroodi, F., & Paknejad, F. (2011). Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiology and Biochemistry, 49:201-207. Doi: 10.1016/j.plaphy.2010.11.010
Barr, H.D., & Weatherley, P.E. (1962).A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 15:413-428. Doi: 10.1071/BI9620413
Bates, L.S., Waldern, R.P., &Tear, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39:205-207. Doi: 10.1007/BF00018060
Dastmalchi, K., Dorman, H.J.D., Kosar, M., & Hiltunen, R. (2007).Chemical composition and in vitro antioxidant evaluation of a water soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT-Food Science and Technololgy,40:239-248. Doi: 10.1016/j.lwt.2005.09.019
Dastmalchi, K., Dorman, H.J.D., Laakso, H.J., & Hiltunen, R. (2007). Chemical composition and antioxidative activity of Moldavian balm (Dracocephalum moldavica L.) extracts. LWT-Food Science and Technology, 40:1655-1663. Doi: 10.1016/j.lwt.2006.11.013
Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146:101-106. Doi: 10.1007/s12011-011-9222-7
Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., & Hong, F. (2008). Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals, 21:211-217. Doi: 10.1007/s10534-007-9110-y
Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere, 81:1253-1262. Doi: 10.1016/j.chemosphere.2010.09.022
Hazeem, L.J., Bououdina, M., Rashdan, S., Brunet, L., Slomianny, C., & Boukherroub, R. (2016). Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environmental Science and Pollution Research,23(3): 2821-2830. Doi: 10.1007/s11356-015-5493-4
Heath, R.L., & Packer L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochemistry and Biophysics, 125:189-198. Doi: 10.1016/0003-9861(68)90654-1
Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105:269-279. Doi: 10.1385/BTER:105:1-3:269
Khodakovskaya, M.V., & Lahiani, M.H. (2014). Nanoparticles and Plants: FromToxicity to Activation of Growth, in Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology (eds S. C. Sahu and D. A. Casciano), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781118856017.
Kleinwächter, M., Paulsen, J., Bloem, E., Schnug, E., & Selmar, D. (2015). Moderate drought and signal transducer induced biosynthesis of relevant secondary metabolites in thyme (Thymus vulgaris), greatercelandine (Chelidonium majus) and parsley (Petroselinum crispum). Industrial Crops and Products, 64:158-166. Doi: 10.1016/j.indcrop.2014.10.062
Larue,C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.M., Brisset, F., & Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Science of the Total Environment, 431:197-208. Doi: 10.1016/j.scitotenv.2012.04.073
Lei, Z., Su, M.Y., Wu, X., Liu, C., Qu, C.X., Chen, L., Huang, H., Liu, X.Q., & Hong, F.S. (2008). Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-Beta radiation. Biological Trace Element Research, 121:69-79. Doi: 10.1007/s12011-007-8028-0
Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b in leaf extracts in different solvents. Biochemical Society Transactions,11:591-592. Doi: 10.1042/bst0110591
Ma, L.L., Liu, C., Qu, C.X., Yin, S.T., Liu, J.,Gao, F.Q., & Hong, F.S. (2008). Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biological Trace Element Research, 122: 168-178. Doi: 10.1007/s12011-007-8069-4
Manukyan, A. (2011). Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soil less greenhouse production: I. drought stress. Medicinal and aromatic plant science and biotechnology, 5:119-125.
Melchiorre, M., Robert, G., Trippi, V., Racca, R., & Lascano, H.R. (2009). Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regulation, 57:57-68. Doi: 10.1007/s10725-008-9322-3
Mishra, V., Mishra, R.K., Dikshit, A., & Pandey, A.C. (2014). Interactions of Nanoparticles with Plants: An Emerging Prospective in the Agriculture Industry. In: Ahmad P, Rasool S. (ed) Emerging Technologies and Management of Crop Stress Tolerance. Elsevier, Oxford, pp.159-180. Doi: 10.1016/b978-0-12-800876-8.00008-4
Mohammadi, R., Maali-Amiri, R., & Abbasi, A. (2013). Effect of TiO2 nanoparticles on chickpea response to cold stress. Biological Trace Element Research, 152:403-410. Doi: 10.1007/s12011-013-9631-x
Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A., Quigg, A., Santschi, P.H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17:372-386. Doi: 10.1007/s10646-008-0214-0
Nazari, M., MaaliAmiri, R., Mehraban, F.H., & Khaneghah, H.Z. (2012). Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russian Journal of Plant Physiology, 59:183-189. Doi: 10.1134/S102144371201013X
Owolade, O.F., Ogunleti, D.O., & Adenekan, M.O. (2008). Titanium dioxide affected diseases, development and yield of edible cowpea. Electronic Journal of Environmental, Agricultural and Food Chemistry,7:2942-2947.
Raliya, R., Biswas, P., & Tarafdar, J.C. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vignaradiata L.). Biotechnology Reports,5:22-26. Doi: 10.1016/j.btre.2014.10.009
Sefidkon, F., Jamzad, Z., & Mirza, M. (2004).Chemical variation in the essential oil of Satureja sahendica from Iran. Food Chemistry, 88:325-328. Doi: 10.1016/j.foodchem.2003.12.044
Selmar, D., & Kleinwachter, M. (2013). Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant and Cell Physiology, 54:817-826. Doi: 10.1093/pcp/pct054
Serraj, R., & Sinclair, T.R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell &Environment, 25:333-341. Doi: 10.1046/j.1365-3040.2002.00754.x
Su, M., Wu, X., Liu, C., Qu, C., Liu, X., Chen, L., Huang, H., & Hong, F. (2007). Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biological Trace Element Research, 119:183-192. Doi: 10.1007/s12011-007-0065-1
Teulat, B., Zoumarou-Wallis, N., Rotter, B., Ben Salem, M., Bahri, H., & This, D. (2003). QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theoretical and Applied Genetics,108:181-188. Doi: 10.1007/s00122-003-1417-7
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151:59-66. Doi: 10.1016/S0168-9452(99)00197-1
Yamori, W., Masumoto, C., Fukayama, H., & Makino, A. (2012). Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. The Plant Journal, 71: 871–880. Doi: 10.1111/j.1365-313X.2012.05041.x
Yang, L.N., Xing, J.G., He, C.H., & Wu, T.(2014). The phenolic compounds from Dracocephalum moldavica L. Biochemical Systematics and Ecology, 54:19-22. Doi: 10.1016/j.bse.2013.12.009
Yousefzadeh, S., Modarres-Sanavy, A.M., Sefidkon, F., Asgarzadeh, A., Ghalavand, A., & Sadat-Asilan, K. (2013). Effects of Azocompost and urea on the herbage yield and contents and compositions of essential oils from two genotypes of dragonhead (Dracocephalum moldavica L.) in two regions of Iran. Food chemistry, 138: 1407-1413. Doi: 10.1016/j.foodchem.2012.11.070
Zhang, P., Cui, H.X., Zhang, Z.J., & Zhong, R.G. (2008). Effects of nano-TiO2 photosemiconductor on photosynthesis of cucumber plants. Chinese Agricultural Science Bulletin, 24:230-233.
DOI: http://dx.doi.org/10.14720/aas.2016.107.2.11
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2016
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941