Uporaba metodologije mehkih množic pri oceni primernosti tal za različne poljščine

Amin SHARIFIFAR, Hadi GHORBANI, Fereydoon SARMADIAN

Povzetek


V raziskavi so bile ocenjene štiri metode vrednotenja kmetijskih zemljišč vključujoč Storijevo metodo, metodo kvadratnega korena, metodo maksimalne omejitve in metodo mehkih množic. Raziskava je potekala na območju Bastama, v provinci Semnan, v severovzhodnem delu Irana. Primernost zemljišč je bila ovrednotena za tri poljščine, paradižnik, pšenico in krompir. Ocenjene so bile naslednje lastnosti tal: globina koreninjenja, vsebnosti CaCO3, organskega ogljika in gline, pH in naklon zemljišča. Statistične analize so bile narejene pri stopnji značilnosti α = 0,1 in α = 0.05. Rezultati regresijske analize za odvisnost pridelkov izbranih polščin od indeksov primernosti zemljišč, izračunanih po zgoraj omenjenih metodah je pokazala, da je statistično značilna samo odvisnost pridelka od indeksa primernosti zemljišč dobljenega z metodo mehkih množic” Storijeva metoda in metoda kvadratnega korena sta pokazali značilno odvisnost prideleka pšenice od indeksa primernosti zemljišč pri α = 0,1. Raziskava je bila demonstracijski preskus primernosti uporabe metode mehkih množic pri vrednotenju zemljišč v kmetijski rabi. Ugotovljeno je bilo, da je bila ta metodologija v danih okoliščinah najprimernejša.

Ključne besede


mehke množice, vrednotenje zemljišč, raba tal, klasifikacija tal, razmere za rast poljščin, primernost tal, izbira poljščin

Celotno besedilo:

PDF (English)

Literatura


Bazzir, M. 2000. Qualitative, quantitative and economical evaluation of Talandasht lands in Kermanshah for wheat, barley and pea. M.Sc. thesis. Isfahan University of Technology.

Boix L.R., Zinck J.A. 2008. Land-use planning in the Chaco Plain (Burruyacu, Argentina). Part 1: Evaluating land-use options to support cop diversification in an agricultural frontier area using physical land evaluation. Environmental Management 42: 1043‒1063. DOI: 10.1007/s00267-008-9208-1

C.A. Brown. 1942. "Justus von Liebig-Man and teacher." and "Liebig and the Law of the Minimum"in: Liebig and After Liebig: A century of progress in agricultural chemistry. Am. Assoc. Adv. Sci. The Science Press Printing Co., Lancaster, PA.

Burrough P.A. 1989. Fuzzy mathematical methods for soil survey and land evaluation. Journal of Soil Science 40: 477-492. DOI: 10.1111/j.1365-2389.1989.tb01290.x

Burrough P.A., MacMillan R.A., Van Deursen W. 1992. Fuzzy classification methods for determining land suitability from soil profile observations and topography. Journal of Soil Science 43: 193-210. DOI: 10.1111/j.1365-2389.1992.tb00129.x

Carter M.R., Gregorich E.G. 2008. Soil sampling and methods of analysis. 2nd edition. USA, CRC press. 198 p.

Chang Y.C. and Ko T.T. 2014. An interactive dynamic multi-objective programming model to support better land use planning. Land Use Policy 36: 13-22. DOI: 10.1016/j.landusepol.2013.06.009

Corona P., Salvati R., Barbati A., Chirici G. 2008. Land suitability for short rotation coppices assessed through fuzzy membership functions. Patterns and Processes in Forest Landscapes. pp: 191-211. DOI: 10.1007/978-1-4020-8504-8_12

De la Rosa D., Anaya-Romero M., Diaz-Pereira E., Heredia N., Shahbazi F. 2009. Soil-specific agro-ecological strategies for sustainable land use-a case study by using MicroLEIS DSS in Sevilla Province (Spain). Land Use Policy 26: 1055‒1065. DOI: 10.1016/j.landusepol.2009.01.004

De la Rosa D., Mayol F., Diaz-Pereira E., Fernandez M., De la Rosa Jr.D. 2004. A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection with special reference to the Mediterranean region. Environmental Modelling & Software 19: 929‒942. DOI: 10.1016/j.envsoft.2003.10.006

De la Rosa D., Moreno J.A., Garcia L.V., Almorza J. 1992. MicroLEIS: A microcomputer based Mediterranean land evaluation information system. Soil Use and Management 8: 89‒96. DOI: 10.1111/j.1475-2743.1992.tb00900.x

Elaalem M. 2013. A Comparison of Parametric and Fuzzy Multi-Criteria Methods for Evaluating Land Suitability for Olive in Jeffara Plain of Libya. APCBEE Procedia 5: 405-409. DOI: 10.1016/j.apcbee.2013.05.070

FAO (Food and Agriculture Organization). 1976. A framework for land evaluation. FAO Soils Bulletin 32, Rome. ISBN 92-5-1001 11-1.

FAO 1974. Soil Map of the World, Revised 1988. Paris, UNESCO.

Fontes M.P.F., Fontes R.M.O., Carneiroc P.A.S. 2009. Land suitability, water balance and agricultural technology as a Geographic-Technological Index to support regional planning and economic studies. Land Use Policy 26: 589-598. DOI: 10.1016/j.landusepol.2008.08.010

Gruijter J.J., Walvoort D.J.J., Bragato G. 2011. Application of fuzzy logic to Boolean models for digital soil assessment. Geoderma 166: 15-33. DOI: 10.1016/j.geoderma.2011.06.003

Jafarzadeh A.A., Shahbazi F., Shahbazi M.R. 2009. Suitability evaluation of some specific crops in Souma area (Iran), using Cervatana and Almagra models. Biologia 64[3]: 541-545. DOI: 10.2478/s11756-009-0093-8

Jian-Hua W., Xian-Guo L.U., Ming J., Xiao-Yan L.I., Jing-Han T. 2009. Fuzzy Synthetic Evaluation of Wetland Soil Quality Degradation: A Case Study on the Sanjiang Plain, Northeast China. Pedosphere 19[6]: 756–764. DOI: 10.1016/S1002-0160(09)60171-5

Kalogirou S. 2002. Expert systems and GIS: an application of land suitability evaluation. Comput.Environ. & Urban 26: 89-112. DOI: 10.1016/S0198-9715(01)00031-X

Keshavarzi A., Sarmadian F., Heidari A., Omid M. 2010. Land suitability classification using fuzzy continuous classification (a case study: Ziaran region). Modern Applied Science 4[7]: 72-81. DOI: 10.5539/mas.v4n7p72

Khiddir S.M. 1986. A statistical approach in the use of parametric systems applied to the FAO framework for land evaluation. Ph.D. Dissertation, State University of Ghent, Belgium. 141 p.

Kong W., Wang R., Wang Y., Cao J. 2011. Research and Practice of Intensive Use of Land based on the fuzzy evaluation. Procedia Environmental Sciences 10: 1502-1508. DOI: 10.1016/j.proenv.2011.09.239

Liu Y., Jiao L., Liu Y., He J. 2013. A self-adapting fuzzy inference system for the evaluation of agricultural land. Environmental Modelling & Software 40: 226-234. DOI: 10.1016/j.envsoft.2012.09.013

Malczewski J. 2006. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation 8: 270-277. DOI: 10.1016/j.jag.2006.01.003

McBratney A.B., Odeh I.O.A. 1997. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77: 85-113. DOI: 10.1016/S0016-7061(97)00017-7

Mendas A. and Delali A. 2012. Integration of Multicriteria Decision Analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria. Computers and Electronics in Agriculture 83: 117‒126. DOI: 10.1016/j.compag.2012.02.003

Messing I., Fagerstrom M.H., Chen L., Fu B. 2003. Criteria for land suitability evaluation in a small catchment on the Loess Plateau in China. Catena 54: 215-234. DOI: 10.1016/S0341-8162(03)00066-3

Mohammadi J. and Givi J. 2002. Land suitability evaluation for irrigated wheat using fuzzy sets theory in Falavarjan region of Isfahan. Agricultural and Natural Resources Science and Technology 5[1]: 103-116. (In Persian). Published by Isfahan University of Technology.

Nisar Ahmed T.R., Gopal Rao K., Murthy J.S.R. 2000. GIS-based fuzzy membership model for cropland suitability analysis. Agricultural Systems, 63: 75-95. DOI: 10.1016/S0308-521X(99)00036-0

Reshmidevi T.V., Eldho T.I., Jana R. 2009. A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agricultural Systems 101: 101-109. DOI: 10.1016/j.agsy.2009.04.001

Saaty T.L. 1980. The analytic hierarchy process. New York: McGraw Hill International Book Company. 287 p.

Saaty T.L. 2001. Decision making for leaders: The analytic hierarchy process for decision in a complex world. RWS Publications, Pittsburgh. 323 p

Shahbazi F. and Jafarzadeh A.A. 2010. Integrated assessment of rural lands for sustainable development using MicroLEIS DSS in West Azerbaijan, Iran. Geoderma 157: 175-184. DOI: 10.1016/j.geoderma.2010.04.010

Shahbazi F., De la Rosa1 D., Anaya-Romero M., Jafarzadeh A., Sarmadian F., Neyshaboury M., Oustan S. 2008. Land use planning in Ahar area (Iran) using MicroLEIS DSS. Int. Agrophysics 22: 277-286.

Sharififar A. 2012. Assessment of different methods of soil suitability classification for wheat cultivation. Journal of Agrobiology 29[2]: 47-54. DOI: 10.2478/v10146-012-0008-0

Sharififar A., Ghorbani H. and Karimi H. 2013. Integrated land evaluation for sustainable agricultural production by using analytical hierarchy process. Agriculture (Poľnohospodárstvo) 59(3): 131-140. DOI: 10.2478/agri-2013-0012

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Storie R.E. 1976. Storie index soil rating (revised 1978). Spec. Publ. Div. Agric. Sci. No 3203, University of California. Berkeley.

Sys C., Van Ranst E., Debaveye J. 1993. Land Evaluation. Part 3: Crop Requirements. Agricultural Publications 7, 3. General Administration of Development Cooperation of Belgium, Brussels. 199p.

Sys C., Vanranst E., Debaveye J. 1991a. Land evaluation, part I. Principles in land evaluation and crop production calculation. International training center for postgraduate soil scientist and Ghent University, Ghent. 274 p.

Sys C., Vanranst E., Debaveye J. 1991b. Land evaluation, part II. Methods in land evaluation. International training center for postgraduate soil scientist and Ghent University, Ghent. 247 p.

Tang H., Debaveye J., Ruan D., Van Ranst E. 1991. Land suitability classification based on fuzzy set theory. Pedologie XLI-3, 277-290.

Tang H., Van Ranst E., Groenemans R. 1997. Application of fuzzy set theory to land suitability assessment. Malaysian Journal of Soil Science 3: 39-58.

Tang H., Van Ranst E., Sys C. 1992. An approach to predict land production potential for irrigated and rain fed winter wheat in Pinan County, China. Soil Technology 5: 213-224. DOI: 10.1016/0933-3630(92)90023-T

Tang, H. 1993. Land suitability classification based in fuzzy set theory and modeling of land production potential of maize and winter wheat in different zones of china. Ph.D thesis. University of Gent. Belgium. 241 pp.

Torbert H.A., Krueger E. and Kurtener D. 2008. Soil quality assessment using fuzzy modeling. Int. Agrophysics 22: 365-370.

USDA 2010. Keys to Soil Taxonomy. 11th edition. Soil Survey Staff, United States Department of Agriculture. 338 p.

Van Ranst E., Tang H. 1999. Fuzzy reasoning versus Boolean logic in land suitability assessment. Malaysian Journal of Soil Science 3: 39-58.

Van Ranst E., Tang H., Groenemans R., Sinthurahat S. 1996. Application of fuzzy logic to land suitability for rubber production in peninsular Thailand. Geoderma 70: 1-19. DOI: 10.1016/0016-7061(95)00061-5

Van Ranst, E., J. Debaveye and F. Mohp. 1999. Assessment of Cane yield on well-drained Ferralosols in the sugar-cane Eastate of central Cameron. TROPICULTRA. 16/17: 8-14.

Vliet J.V., Hagen-Zanker A., Hurkens J., Delden H.V. 2013. A fuzzy set approach to assess the predictive accuracy of land use simulations. Ecological Modelling 261-262: 32-42. DOI: 10.1016/j.ecolmodel.2013.03.019

Wang Li-Xin., 1997. A Course in Fuzzy Systems and Control. Prentice Hall, New Jersey, USA. 424 p.

Yue-Ju X., Shu-Guang L., Yue-Ming H., Jing-Feng Y. 2010. Soil Quality Assessment Using Weighted Fuzzy Association Rules. Pedosphere 20[3]: 334–341. DOI: 10.1016/S1002-0160(10)60022-7

Zadeh L.A. 1965. Fuzzy sets. Information and Control 8: 338-353. DOI: 10.1016/S0019-9958(65)90241-X




DOI: http://dx.doi.org/10.14720/aas.2016.107.1.16

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2016

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941