Učinek solnega stresa na fiziološki in biokemični odziv treh genotipov koruze v zgodnji razvojni stopnji semenke
Povzetek
Solni stres je eden največjih globalnih problemov za uspevanje gojenih rastlin v sušnih in polsušnih območjih sveta. V raziskavi so bili preučevani nekateri fiziološki parametri, vodni režim in antioksidacijski system v razmerah slanosti (300 mM NaCl) pri treh genotipih koruze (Zea mays L.; ‘P3167’, ‘32K61’, in ‘Bora’). Izsledki so pokazali, da je rast poganjka bolj občutljiva na slanost v primerjavi z rastjo korenin. Solni stres je povzročil fiziološko sušo pri vseh genotipih koruze, ki se je izražala kot značilen upad v relativni vsebnosti vode in povečanju indeksa vodnega deficita. Solni stres je povečal aktivnost SOD pri vseh genotipih, kar kaže na učinkovito razstrupljanje superoksidnega radikala. Stalna raven vsebnosti označevalcev oksidacije (MDA in H2O2) in povečana vsebnost reduciranega askorbata ter fenolov lahko nakazujejo, da so neencimski antioksidanti odgovorni za odpravo oksidacijskega stresa. Spremembe v aktivnosti askorbat peroksidaze in glutation reduktaze v razmerah slanosti so pokazale funkcionalni zlom askorbat-glutationskega cikla, še posebej pri ‘P3167’ in ‘32K61’. Na osnovi predstavljenih izsledkov lahko zaključimo, da je genotip ‘Bora’ toleranten na slanost, medtem ko sta ‘P3167’ in ‘32K61’ občutljiva.
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Abdelkader, M.A.I., Hassan, H.M.S., Elboraie, E.A.H. (2019). Using proline treatments to promote growth and productivity of Rosmarinus officinalis L. plant grown under soil salinity conditions. Middle East Journal of Applied Sciences, 9, 700-710.
Ahammed, G.J., Li, Y., Li, X., Han, W.Y., Chen, S. (2018). Epigallocatechin-3-gallate alleviated salinity-retarded seed germination and oxidative stress in tomato. Journal of Plant Growth Regulation, 37, 1349-1356. https://doi.org/10.1007/s00344-018-9849-0
Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391-396. https://doi.org/10.1104/pp.106.082040
Ashraf, M., Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress tolerance. Environmental and Experimental Botany, 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Bendeoğlu, E., Eyidoğan, F., Yücel, M., Öktem, H. A. (2014). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation, 42, 69-77. https://doi.org/10.1023/B:GROW.0000014891.35427.7b
Chandler, S. F., Dodds, J. H. (1983). The effect of phosphate, nitrogen and sucrose on the production of phenolics and socosidine in callus cultures of Solanum laciniatum. Plant Cell Reports, 2, 105-108.
Chen, Y., Zheng, H.L., Xio, Q., Huang, W.B., Zhu, Z. (2005). Effects of salinity on oxidative and antioxidative system of Spartina alterni flora. Xiamen Daxue Xuebao, 44, 576-579.
Chunthaburee, S., Sakuanrungsirikul, S., Wongwarat, T., Sanitchon, J., Pattanagul, W., Theerakulpisut, P. (2016). Changes in anthocyanin content and expression of anthocyanin synthesis gene in seedlings of black glutinous rice in response to salt stress. Asian Journal of Plant Science, 15, 56-65. https://doi.org/10.3923/ajps.2016.56.65
Doğru, A., Çakırlar, H. (2020a). Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Functional Plant Biology, 47, 250-262. https://doi.org/10.1071/FP19200
Doğru, A., Çakırlar, H. (2020b). Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes in winter rapeseeds leaves under cold acclimation conditions. Brazilian Journal of Botany, 43, 11-20. https://doi.org/10.1007/s40415-020-00577-9
Doğru, A., Ecem Bayram, N. (2016). A study on drought stress tolerance in some maize (Zea mays L.) cultivars. SAU Journal of Science, 20, 509-519. https://doi.org/10.16984/saufenbilder.25673
Doğru, A., Yılmaz Kaçar, M. (2019). A preliminary study on salt tolerance of some barley genotypes. SAU Journal of Science, 23, 755-762. https://doi.org/10.16984/saufenbilder.371055
Dubois, M., Gilles, K.A., Hamilton, K.J., Rebers, P.A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356. https://doi.org/10.1021/ac60111a017
Elsheery, N.I., Cao, K.F. (2008). Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiologiae Plantarum, 30, 769-777. https://doi.org/10.1007/s11738-008-0179-x
Fayez, K.A., Bazaid, S.A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13, 45-55. https://doi.org/10.1016/j.jssas.2013.01.001
Gapinska, M., Sklodowska, M., Gabara, B. (2008). Effect of short- and long-term salinity on the activities of the antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiologia Plantarum, 30, 11-18. https://doi.org/10.1007/s11738-007-0072-z
Gu, R., Zhou, Y., Song, X., Xu, S., Zhang, X., Lin, H., Xu, S., Zhu, S. (2018). Effects of temperature and salinity on Ruppia sinensis seed germination, seedling establishment, and seedling growth. Marine Pollution Bulletin, 134, 177-185. https://doi.org/10.1016/j.marpolbul.2017.08.013
Hameed, A., Bibi, N., Akhter, J., Iqbal, N. (2011). Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit. Plant Physiology and Biochemistry, 49, 178-185. https://doi.org/10.1016/j.plaphy.2010.11.009
Hare, P.D., Cress, W.A., van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment, 21, 535-553. https://doi.org/10.1046/j.1365-3040.1998.00309.x
Hasan, M.K., Islam, M.S., Islam, M.R., Ismaan, H.N., El Sabagh, A., Barutçular, C., Meena, R.S., Saneoka, H. (2019). Water relations and dry matter accumulation of black gram and mung bean as affected by salinity. Thai Journal of Agricultural Science, 52, 54-67.
Khayamim, S., Afshari, R.T., Sadeghian, S.Y., Poustini, K., Rouzbeh, F., Abbasi, Z. (2014). Seed germination, plant establishment, and yield of sugar beet genotypes under salinity stress. Journal of Agricultural Science and Technology, 16, 779-790.
Law, M.Y., Charles, S.A., Halliwell, B. (1983). Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochemical Journal, 210, 899-903. https://doi.org/10.1042/bj2100899
Mancinelli, A.L., Yang, C.P.H., Lindquist, P., Anderson, O. R., Rabino, I. (1975). Photocontrol of anthocyanin synthesis III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiology, 55, 251-257. https://doi.org/10.1104/pp.55.2.251
Mayer, A.M., Harel, E. (1991). Phenol oxidases and their significance in fruit and vegetables. Food Enzyme, 32, 373-398.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
Moghbeli, E., Fathollahi, S., Salari, H., Ahmadi, G., Saliqehdar, F., Safari, A., Grouh, M.S.H. (2012). Effects of salinity stress on growth and yield of Aloe vera L. Journal of Medicinal Plants Research, 6, 3272-3277. https://doi.org/10.5897/JMPR11.1698
Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment, 33, 453-467. https://doi.org/10.1046/j.0016-8025.2001.00808.x
Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Orlovsky, N., Japakova, U., Zhang, H., Volis, S. (2016). Effect of salinity on seed germination, growth and ion content in dimorphic seeds of Salicornia europea L. (Chenopodiaceae). Plant Diversity, 38, 183-189. https://doi.org/10.1016/j.pld.2016.06.005
Panda, S.K., Upadhyay, R.K. (2004). The salt stress injury induces in the roots of Lemna minor. Biologia Plantarum, 48, 249-253. https://doi.org/10.1023/B:BIOP.0000033452.11971.fc
Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
Parida, A.K., Das, A.B., Sanada, Y., Mohanty, Y. (2004). Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80, 77-87. https://doi.org/10.1016/j.aquabot.2004.07.005
Petridis, A., Therios, I., Samouris G., Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive (Olea europaea L.) cultivars and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43. https://doi.org/10.1016/j.envexpbot.2012.01.007
Polash, M.A.S., Sakil, M. A., Arif, T., Hossain, M. A. (2018). Effect of salinity on osmolytes and relative water content of selected rice genotypes. Tropical Plant Research, 5, 227-232. https://doi.org/10.22271/tpr.2018.v5.i2.029
Potapovich, A.I., Kostyuk, V.A. (2003). Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry, 68, 514-519. https://doi.org/10.1023/A:1023947424341
Sairam, R.K., Rao, K.V., Srivastava, G.C. (2002). Differential response of wheat genotypes to long-term salinity stress relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037-1046. https://doi.org/10.1016/S0168-9452(02)00278-9
Sairam, R.K., Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86, 407-421.
Sakamoto, M., Suzuki, T. (2019). Methyl jasmonate and salinity increase anthocyanin accumulation in radish sprouts. Horticulturae, 5, 62-75. https://doi.org/10.3390/horticulturae5030062
Santos, C.V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103, 93-99. https://doi.org/10.1016/j.scienta.2004.04.009
Smirnoff, N. (1996). Botanical briefing: the function and metabolism of ascorbic acid in plants. Annals of Botany, 78, 661-669. https://doi.org/10.1006/anbo.1996.0175
Taffouo, V.D., Wamba, O.F., Yombi, E., Nono, G.V., Akoa, A. (2010). Growth, yield, water status and ionic distribution response of three Bambara groundnut (Vigna subterranean (L.) verdc.) landraces grown under saline conditions. International Journal of Botany, 6, 53-58. https://doi.org/10.3923/ijb.2010.53.58
Turan, M.A., Türkmen, N., Taban, N. (2010). Effect of NaCl on stomatal resistance and proline, chlorophyll, NaCl and K concentrations of lentil plants. Journal of Agronomy, 6, 378-381. https://doi.org/10.3923/ja.2007.378.381
Wijayasinghe, M.M., Jayasuriya, K.M.G.G., Gunatilleke, C.V.S., Gunatilleke, I.A.U.N., Walck, J.L. (2019). Effect of salinity on seed germination of five mangroves from Sri Lanka: use of hydrotime modelling for mangrove germination. Seed Science Research, 29, 55-63. https://doi.org/10.1017/S0960258518000405
Yıldırım, E., Turan, M., Güvenç, İ. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31, 593-612. https://doi.org/10.1080/01904160801895118
Zaimoğlu, S., Doğru, A., Farklı mısır genotiplerinde tuz stresinin bazı büyüme parametreleri ve fotosentetik aktivite üzerindeki etkileri. 23. Ulusal Biyoloji Kongresi pp. 270, 2016.
DOI: http://dx.doi.org/10.14720/aas.2021.117.1.1964
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2021
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941