Ovrednotenje genotipov trde pšenice (Triticum durum Desf.) na osnovi agro-fizioloških lastnosti in indeksov tolerance na stres

Radhia MEKAOUSSI, Abou-bakr RABTI, Zine El Abidine FELLAHI, Abderrahmane HANNACHI, Amar BENMAHAMMED, Hamenna BOUZERZOUR

Povzetek


Namen te raziskave je bil preučiti obseg spremenljivosti in razmerja med pridelkom zrnja in morfološko-fiziološkimi lastnostmi trde pšenice. Za večino lastnosti je bila ugotovljena zadostna variabilnost. Na osnovi indeksov stresa so bile določene širše in ožje prilagojene linije. Analiza povezanih znakov je pokazala, da so nadzemna biomasa, žetveni indeks, fertilnost klasov in njihovo število najpomembnejše lastnosti, ki določajo pridelek, kar kaže, da so te lastnosti zanimive za žlahtnjiteljske programe. Merjene lastnosti so bile razvrščene znotraj 6 glavnih komponent, kar je prispevalo kar 79,45 % celokupne variabilnosti. Linije križancev razvrščene vzdolž prve glavne komponenete so imele znantno raznolikost glede sposobnosti tolerance na stres. Linije v grozdu C3 so bile tolerantne na stres in imele velik pridelek. Iz te skupine sta bili liniji L24 in L14 prepoznani kot najboljši za 7 in 5 znakov izmed 17 lastnosti. Obe liniji sta predlagani prednostno za uporabo v križanjih kot starševski liniji zaradi njunih zaželjenih lastnosti. Izsledki so pokazali, da fiziološke lastnosti niso bile povezane med sabo niti z morfološkimi znaki, kar povzroča težave pri hkratni selekciji za pridelek in toleranco na stres na osnovi teh lastnosti. Za povečanje genetske povezave med preučevanimi znaki in vzgojo novih osnovnih raznolikih populacij so potrebna kompleksna križanja med pazljivo izbranimi starši, glede na te specifične lastnosti.

Ključne besede


trda pšenica; pridelek zrnja; interakcije genotipa in okolja; fiziološke lastnosti; indeksi tolerance; analiza povezanih znakov; klasterska analiza

Celotno besedilo:

PDF (English)

Literatura


Akintunde, A. N. (2012). Path analysis step by step using excel. Journal of Technical Science and Technologies, 1, 9–15.

Annicchiarico, P., Abdellaoui, Z., Kelkouli, M., & Zerargui, H. (2005). Grain yield, straw yield and economic value of tall and semi-dwarf durum wheat cultivars in Algeria. Journal of Agricultural Science, 143(1), 57–64. https://doi.org/10.1017/s0021859605004855

Asharaf, M. (2010). Inducing drought tolerance in plants: recent advances. Biotechnology Advances 28(1), 199–238. https://doi.org/10.1016/j.biotechadv.2009.11.005

Awan, K.A., Ali, J., & Akmal, M. (2017). Yield comparison of potential wheat varieties by delay sowing as rainfed crop for Peshawar climate Sarhad Journal of Agriculture, 33(3), 480–488. https://doi.org/10.17582/journal.sja/2017/33.3.480.488

Benmahammed, A., Nouar, H., Haddad, L., Laala, Z., & Bouzerzour, H. (2010). Analyse de la stabilité des performances de rendement du blé dur (Triticum durum Desf.) sous conditions semi-arides. Biotechnologie, Agronomie, Société et Environnement, 14, 177–186.

Bhisma, M. (2016). How to conduct path analysis and structural equation model for health research. International Conference on Public Health Best Western Premier Hotel, Solo, Indonesia, September 14-15, Masters Program in Public Health, Graduate Program. Sebelas Maret University, Indonisia.

Ceccarelli, S., Acevedo, E., & Grando, S. (1991). Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. Euphytica, 56(2), 169–185. https://doi.org/10.1007/bf00042061

Chamekh, Z., Karmous, C., Ayadi, S., Sahli, A., Hammami, Z., Belhaj Fraj, M., …… & Slim-Amara, H. (2015). Stability analysis of yield component traits in 25 durum wheat (Triticum durum Desf.) genotypes under contrasting irrigation water salinity. Agricultural Water Management, 152, 1–6. http://dx.doi.org/10.1016/j.agwat.2014.12.009.

Clarke, J. M., Richards, R. A., & Condon, A. G. (1992). Effect of drought stress on residual transpiration and its relationship with water use of wheat. Canadian Journal of Plant Science, 71(3), 695–702. https://doi.org/10.4141/cjps91-102

CropStat 7.2. (2008). Software package for windows. Manila, International Rice Research Institute (IRRI).

Cruz, C. D., Regazzi, A. I., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético. 4th Ed. UFV, Viçosa.

Dhanda, S. S., & Sethi, G. S. (1998). Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum L).

Euphytica, 104(1), 39–47. https://doi.org/10.1023/a:1018644113378

Di Matteo, J. A., Ferreyra, J. M., Cerrudo, C., Alejandro, A., Echarte, L., & Fernando, H. (2016). Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding. Field Crops Research, 197, 107–116. https://doi.org/10.1016/j.fcr.2016.07.023

Dorostkar, S., Dadkhodaie, A., & Heidari, B. (2015). Evaluation of grain yield indices in hexaploid wheat genotypes in response to drought stress. Archives of Agronomy and Soil Science, 61(3), 397–413. https://doi.org/10.1080/03650340.2014.936855

Farshadfar, E., Poursiahbidi, M. M., & Safavi S. M. (2018). Assessment of drought tolerance in land races of bread wheat based on resistance/ tolerance indices. International Journal of Advanced Biological and Biomedical Research, 6, 233–245.

Fraser, E.A.B., Simelton, E., Termansen, M.S., Gosling, N., & South, A. (2013). Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology, 170, 195–205. https://doi.org/10.1016/j.agrformet.2012.04.008

Golabadi, M., Arzani, A. S., & Maibody, A. M. (2006). Assessment of drought tolerance in segregating populations in durum wheat. African Journal of Agricultural Research, 5, 162–171.

Grzesiak M.T., Marcińska, I., Janowiak, F., Rzepka, A., & Hura, T. (2012). The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiologiae Plantarum, 34(5), 1757–1764. https://doi.org/10.1007/s11738-012-0973-3

Grzesiak, M.T., Hura, K., Jurczyk, B., Hura, T., Rut, G., Szczyrek, P., & Grzesiak, S. (2017). Physiological markers of stress susceptibility in maize and triticale under different soil compaction and/or soil water contents. Journal Plant Interaction, 12(1), 355–372. https://doi.org/10.1080/17429145.2017.1370143

Haddad, L., Bouzerzour, H., Benmahammed, A., Zerargui, H., Hannachi, A., Bachir, A., ………& Laala, Z. (2016). Analysis of genotype × environment interaction for grain yield in early and late sowing date of Durum Wheat (Triticum durum Desf.) genotypes. Jordan Journal of Biological Sciences, 8(3), 139–146. https://doi.org/10.4314/jfas.v8i3.19

Hammer, O., Harper, D.A.T., & Ryan, P. D. (2001). PAST: Paleantological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1-9.

Hasheminasab, H., Farshadfar, E., & Varvani, H. (2014). Application of physiological traits related to plant water status for predicting yield stability in wheat under drought stress conditions. Annual Review & Research in Biology, 4(5), 778–789. https://doi.org/10.9734/arrb/2014/6689

https://www.ceicdata.com/en/algeria/agricultural-production/agriculture-

production-vegetable-cereals-durum-wheat (accessed on March, 29th, 2020)

Hura, T., Hura, K., Grzesiak, M. T., & Rzepka, A. (2007). Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. Acta Physiologiae Plantarum, 29(2), 103–113. https://doi.org/10.1007/s11738-006-0013-2

Ibrahim, A., & Quick, J. S. (2001). Genetic control of high temperature tolerance in wheat as measured by membrane stability. Crop Science, 41(5), 1405–1407. https://doi.org/10.2135/cropsci2001.4151405x

Khajuria, P., Singh, A. K., & Singh, R. (2016). Identification of heat stress tolerant genotypes in bread wheat. Electronic Journal of Plant Breeding, 7(1), 124–131. https://doi.org/10.5958/0975-928x.2016.00016.8

Khan, F., Azam, A., & Ali, A. (2010). Relationship of morphological traits and grain yield in recombinant inbred lines grown under drought conditions. Pakistan Journal of Botany, 42(1), 259–267.

Li, P., Chen, J., & Wu, P. (2011). Agronomic characteristics and grain yield of 30 spring wheat genotypes under drought stress and non-stress conditions. Agronomy Journal, 103(6), 1619–1628. https://doi.org/10.2134/agronj2011.0013

Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1986). Stability analysis: where do we stand? Crop Science, 26(5), 894–900. https://doi.org/10.2135/cropsci1986.0011183x002600050012x

Lin, C.S., & Binns, M.R. (1988). A superiority measure of cultivar performance for cultivar × location data. Canadian Journal of Plant Science, 68(1), 193–198. https://doi.org/10.4141/cjps88-018

Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 1–7. https://doi.org/10.1088/1748-9326/2/1/014002

Lopes, M.P., Reynolds, M.P., Jalal-Kamali, M.R., Moussa, M., Feltaous, Y., Tahir, I.S.A., ……& Baum, M. (2012). The yield correlations of selectable physiological traits in a population of advanced spring wheat lines grown in warm and drought environments. Field Crops Research, 128, 129–136. https://doi.org/10.1016/j.fcr.2011.12.017

Marcinska I, Czyczyło-Mysza, I., Skrzypek, E., Grzesiak, M., Popielarska Konieczna, M., Warchoł, M., & Grzesiak, S. (2017). Application of photochemical parameters and several indices based on phenol-typical traits to assess intra-specific variation of oat (Avena sativa L.) tolerance to drought. Acta Physiologiae Plantarum, 39(7), 153, 1–13. https://doi.org/10.1007/s11738-017-2453-2

Mohammadi, R., Sadeghzadeh, D., Armion, M., & Amri, A. (2011). Evaluation of durum wheat

experimental lines under different climate and water regime conditions of Iran. Crop and Pasture Science, 62(2), 137–151. https://doi.org/10.1071/cp10284

Nouri, A., Etminan, A., Teixeira da Silva, J. A., & Mohammadi, R. (2011). Assessment of yield, yield related traits and drought tolerance of durum wheat genotypes (Triticum turgidum var. durum Desf.). Australian Journal of Crop Science, 5(1), 8–16.

Pask A.J.D., Pietragala, J., Mullan, F.M., & Reynolds, M.P. (2012). Physiological Breeding II: A field guide to wheat phenotyping. Mexico, DF, CIMMYT.

Saed-Moucheshi, A., Hasheminasab, H., & Assad, M. T. (2016). Modeling the relationships between yield stability and its related physio-biochemical traits under water deficit conditions in wheat. Biharean Biologist, 10, 123–130.

Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crop Research, 9, 222–229.

Wahid, A., Gelani, S., Asharf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

Weedon, O. D., & Finckh, M. R. (2019). Heterogeneous winter wheat populations differ in yield stability depending on their genetic background and management system. Sustainability, 11(21), 6172. https://doi.org/10.3390/su11216172

Wolde, T., Eticha, F., Alamerew, S., Assefa, E., & Dutamo, D. (2016). Trait associations in some durum wheat (Triticum durum Desf.) accessions among yield and yield related traits at Kulumsa, South Eastern Ethiopia. Advances in Crop Science and Technology, 4(4), 234–237. https://doi.org/10.4172/2329-8863.1000234




DOI: http://dx.doi.org/10.14720/aas.2021.117.2.2021

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941