Ovrednotenje biokemičnih obravnavanj onesnaženih tal, ki so bila dalj časa namakana z vodo slabe kakovosti z meritvijo sproščanja CO2

Mohamed SABER, Alaa M ZAGHLOUL

Povzetek


Za prepoznavanje obremenitev, ki jih povzročajo nekateri remediacijski dodatki, ki se navadno uporabljajo pri bioremediaciji tal namakanih dalj časa z vodo slabe kakovosti na samoniklo mikrobno populacijo, je bil izveden poskus v rastlinjaku v nacionalnem raziskovalnem centru (NRC). Tlem so dodajali različne mineralne remediacijske dodatke in spremljali sproščanje ogljikovega dioksida (CO2). Mikrobna aktivnost, izražena kot iztok CO2, je služila kot indikator ovrednotenja učinkovitosti osmih talnih dodatkov, ki naj bi zmanjšali škodo, ki jo v talnem ekosistemu povzročajo anorganska onesnaževala iz vode za namakanje slabe kakovosti v obdobju več kot 40 let. Rezultati so pokazali, da sta bila Ni in Zn dominantna kontaminanta, ki sta negativno vplivala na aktivnost samoniklih mikrobov v obravnavanih tleh medtem, ko je bil učinek Cu največji. Vsi poskusi dodatkov v remediaciji so značilno zmanjšali tveganja poškodbe tal zaradi anorganskih polutantov v obravnavanih talnih ekosistemih. Pri tem je bil spremenjeni bentonit (Probentonite) najučinkovitejši. V raziskavi so interpretirani mehanizmi, ki potekajo med dodatki v remediaciji in anorganskimi onesnaževali v preučevanih talnih ekosistemih. Zaključek je, da je dodatek nekaterih osnovnih ali spremenjenih glinenih mineralov, še posebej probentonita lahko dobro sredstvo za zmanševanje onesnaženja z nekaterimi anorganskimi onesnaževali v onesnaženih ekosistemih, ki so bili namakani z vodo slabe kakovosti v daljšem obdobju.


Ključne besede


tla; voda slabe kakovosti; bioremediacija; potencialno toksični elementi; aktivnost samoniklih talnih mikrobov; spremenjeni glineni minerali

Celotno besedilo:

PDF (English)

Literatura


Andini S., Cioffi F., Montagnaro F., and Santoro L. (2006). Simultaneous adsorption of chlorophenol and heavy metal ions on organophilic bentonite. Applied Clay Science, 31, 126-133. https://doi.org/10.1016/j.clay.2005.09.004

Anvar S.H. and Oliver M. (2002). Soil microbial eco-physiology as affected by short-term variations in environmen-tal conditions. Soil Biology and Biochemistry, 34, 1283–1290. https://doi.org/10.1016/S0038-0717(02)00071-8

Bardgett RD. and Saggar S. (1994). Effects of heavy metal contamination on the short-term decomposition of labelled 14C glucose in a pasture soil. Soil Biology and Biochemistry, 26, 727–733. https://doi.org/10.1016/0038-0717(94)90265-8

Chander K and Brookes P (1993). Residual effects of zinc, copper and nickel in low quality water sludge on micro-bial biomass in a sandy loam. Soil Biology and Biochemistry, 25, 1231–1239. https://doi.org/10.1016/0038-0717(93)90219-2

Doaa Ali, Omaima Sharaf, Mohamed Saber, Essam Hoballah, Mohamed Khaled Ibrahim, Einas El- Shatoury and Alaa Zaghloul (2020). Bioremediation of potential toxic elements in varied soil ecosystems (greenhouse scale). Plant Archives, 20, 9482-9490.

Doelman P. and Haanstra L. (1984). Short-term and long term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant and Soil 79: 317-327. https://doi.org/10.1007/BF02184325

Ferris A. and Jepson W. (1975). The exchange capacities of kaolinite and the preparation of homoionic clays. Journal of Colloid Interface Science, 51, 245–259. https://doi.org/10.1016/0021-9797(75)90110-1

Khan M. and Scullion J. (1999). Microbial activity in grass­land soil amended with low quality water sludge con-taining varying rates and combinations of Cu, Ni, Zn. Biology and Fertility of Soils, 30, 202–209. https://doi.org/10.1007/s003740050609

Kelly J. and Tate R. (1998). Effects of heavy metals contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. Journal of Environmental Quality, 27, 609–617. https://doi.org/10.2134/jeq1998.00472425002700030019x

Kuzyakov Y. (1997). The role of amino acids and nucleic bases in turnover of nitrogen and carbon in soil humic fractions. European Journal of Soil Science, 48, 121–130. https://doi.org/10.1111/j.1365-2389.1997.tb00191.x

La Grega M., Buckingham P. and Evans, J. (1994). Hazardous Waste Management, McGraw Hill Publication.

Leifeld J., Siebert S. and Kogel-Knabner I. (2002). Biological activity and organic matter mineralization of soil amended with biowaste composts. Journal of Plant Nutrition and Soil Science, 165, 151–159. https://doi.org/10.1002/1522-2624(200204)165:2<151::AID-JPLN151>3.0.CO;2-T

Ma L., Tan F. and Harris W. (1997). Concentration and distribution of eleven metals in Florida soils, Journal of Envi-ronmental Quality, 26, 769-775. https://doi.org/10.2134/jeq1997.00472425002600030025x

Mench M., Vangronsveld J., Lepp N. and Edwards R. (1998). Physio-chemical aspects and efficiency of trace ele-ment immobilisation by soil ammendments. In Metal contaminated soils: In situ inactivation and phytorestoration. Springer-Verlag and R.G. Edited by J. Vangronsveld and S.D. Cunningham. Landes Company, 151-182.

Mohamed Saber, Hussein, F. Abuouziena, Esam Hoballah, Fatma Abd-Elzaher, Azza Tyrkey and Alaa Zaghloul (2015). Risk assessment and mitigation measures for certain amendments used in bioremediation of low quality waterd soils. International Journal of ChemTech Research CODEN (USA): IJPRIF (ISSN: 0974-4304), 8(6), 423-440.

O’Day P., Parks G. and Brown G. (1994). Molecular structure and binding sites of Co2+ surface complexes on kao-linite from X-ray adsorption spectroscopy. Clays Clay Mineral, 42, 337–355. https://doi.org/10.1346/CCMN.1994.0420312

Oste L., Dolfing J., Ma W. and Lexmond T. (2001). Cd uptake by earthworms as related to the availability in the soil and the intestine. Environmental Toxicology and Chemistry, 20, 1785–1791. https://doi.org/10.1002/etc.5620200823

Phillips I.R. (1998) Phosphorus availability and sorption under alternating waterlogged and drying conditions. Communication of Soil Science and Plant Analysis, 29, 3045–3059. https://doi.org/10.1080/00103629809370175

Prost R. and Yaron B. (2001). Use of modified clays for controlling soil environmental quality. Soil Science,166, 880–895. https://doi.org/10.1097/00010694-200112000-00003

Saber M., Hobballa E., Soad El-Ashery and Zaghloul A. (2012). Decontamination of potential toxic elements in low quality water soils by inorganic amendments. Journal of Agricultural Science and Technology,A, 2, 1232-1244.

Samaneh T. and Mohsen J. (2016). Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environmental Monitoring and Assessment, 6, 188-322. https://doi.org/10.1007/s10661-016-5313-4

SAS Institute (1985). SAS/STAT Guide for Personal Computers. 6th ed. SAS Ins., Cary, NC

Schulthess C.P. and Huang C.P. (1990). Adsorption of heavy metals by silicon and aluminum oxide surfaces on clay minerals. Soil Science Society American Journal, 54, 679-688. https://doi.org/10.2136/sssaj1990.03615995005400030008x

Singh S.P. and Mattigod S.V. (1992) Modeling boron adsorption on kaolinite. Clays Clay Miner, 40, 192–205. https://doi.org/10.1346/CCMN.1992.0400209

USEPA (2001). USEPA test methods. SW-846 manual. Available online at www.epa.gov/epaoswerlhazwaste/test/sw846.htm (verified11 Apr. 2003). USEPA, Washington, DC

Welp G. (1999). Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biology and Fertility of Soils, 30, 132-139. https://doi.org/10.1007/s003740050599

Yonebayashi K. and Hattori T. (1989). Chemical and biological studies on environmental humic acids: II. 1H–NMR and IR spectra of humic acids. Soil Science and Plant Nutrition, 35, 383–392. https://doi.org/10.1080/00380768.1989.10434771

Zaghloul A.M. (2002). Kinetics of potassium adsorption in some soils of Egypt using Electrical Stirred Flow unit (ESFU). Egyptian Journal of Soil Science, 42, 463–471.

Zaghloul A.M., Camilia El-Dewany and Yousef R.A. (2006). Distribution of Pb and Zn in some Egyptian contami-nated soils as affected by time of exposure and source of pollutants. Journal of Applied Science Research. 2, 284-289.




DOI: http://dx.doi.org/10.14720/aas.2021.117.4.2111

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941