Ovrednotenje lastnosti korenin krušne pšenice (Triticum aestivum L.) povezanih s sušnim stresom v začetku vegetativne in reproduktivne faze razvoja

Arman ESKANDARI SHAHRAKI, Mohammad-Mehdi SOHANI, Sadollah HOOSHMAND, Ali AALAMI, Habibullah SAMIZADEH

Povzetek


Korenine imajo pomembno vlogo za pridelek zrnja pšenice, še posebej v razmerah suše. Za preučevanje značilnosti korenin krušne pšenice v razmerah sušnega stresa je bilo pridobljenih 90 linij F10 iz naključnih križanj med starševskima sortama Yecora Rojo in Chinese Spring. Raziskava je bila izvedena kot poskus z deljenkami kot popolni naključni bločni poskus v treh stresnih razmerah: 1. brez stresa, 2. sušni stres na začetku vegetativne faze razvoja in 3. sušni stres na začetku reproduktivne faze razvoja. Rezultati so pokazali, da je bila interakcija med genotipom in razmerami stresa značilna za vse s koreninami povezane lastnosti na ravni 1 % verjetnosti, razen za suho maso plitvih korenin. Odziv s koreninami povezanih lastnosti na različne vrste sušnega stresa je bil zelo kompleksen. Zmanšanje dolžine najdaljših korenin za 13,3 % v primerjavi s kontrolo je bilo, ko je sušni stres nastopil na začetku vegetativne faze razvoja med tem, ko se je isti parameter povečal za 4,9 % ob nastopu sušnega stresa na začetku reproduktivne faze razvoja v primerjavi z nestresnimi razmerami. Rezultati analize glavnih component iz poskusa v nestresnih razmerah so pokazali, da bi z upoštevanjem razvrstitve genotipov glede na dve prvi komponenti te lahko razdelili na tiste, ki imajo več pridelka in primeren koreninski sistem in obratno.

Ključne besede


globoke korenine; sušni stres; glavne komponenete; plitve korenine; tolerančni indeks

Celotno besedilo:

PDF (English)

Literatura


Ali, M. B. and A. N. El-Sadek. (2016). Evaluation of drought tolerance indices for wheat (Triticum aestivum L.) under irrigated and rainfed conditions. Communications in Biometry and Crop Science, 11(1), 77-89.

Bardgett, R. D., L. Mommer and F. T. De-Vries. (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29(12), 692-699. https://doi.org/10.1016/j.tree.2014.10.006

Dalal, M., S. Sahu, S. Tiwari, A. R. Rao and K. Gaikwad. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiolo-gy and Biochemistry,130, 482-492. https://doi.org/10.1016/j.plaphy.2018.07.035

Ehdaie, B., A. P. Layne and J. G. Waines. (2012). Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 186, 219-232. https://doi.org/10.1007/s10681-011-0585-9

Ehdaie, B., S. A. Mohammadi and M. Nouraein. (2016). QTLs for root traits at mid-tillering and for root and shoot traits at maturity in a RIL population of spring bread wheat grown under well-watered conditions. Euphytica, 211(1), 17-38. https://doi.org/10.1007/s10681-016-1670-x

Ehdaie, B. and J. G. Waines. (1994). Genetic analysis of carbon isotope discrimination and agronomic characters in a bread wheat cross. Theoretical and Applied Genetics, 88(8), 1023-1028. https://doi.org/10.1007/BF00220811

Gao, Y. and J. P. Lynch. (2016). Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). Journal of Experimental Botany, 67(15), 4545-4557. https://doi.org/10.1093/jxb/erw243

Ghassemi-Golezani, K., S. Heydari and B. Dalil. (2018). Field performance of maize (Zea mays L.) cultivars under drought stress. Acta agriculturae Slovenica, 111(1), 25-32. https://doi.org/10.14720/aas.2018.111.1.03

Hammer, G. L., Z. Dong, G. McLean, A. Doherty, C. Messina, J. Schussler, C. Zinselmeier, S. Paszkiewicz and M. Cooper. (2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt. Crop Science, 49(1), 299-312. https://doi.org/10.2135/cropsci2008.03.0152

Hassani, F. (2016). Evalution of terminal drought tolerance and validation of its related EST-SSRs in bread wheat. Thesis for the degree of Ph. D. in Plant Breeding, Shahre-kord university, Iran. (In Persian with English abstract).

Heidari, Z. (2012). Determination of chromosomal position of genes controlling some physiological traits related to drought re-sistance in bread wheat (Triticum aestivum) and their relationship with root traits, using selected alternative lines. Thesis for the degree of M.Sc. in Plant Breeding, Shahre-kord university, Iran. (In Persian with English abstract)

Jin, K., J. Shen, R. W. Ashton, R. P. White, I. C. Dodd, M. A. Parry and W. R. Whalley. (2015a). Wheat root growth responses to horizontal stratification of fertiliser in a water-limited environment. Plant and Soil, 386(1-2), 77-88. https://doi.org/10.1007/s11104-014-2249-8

Jin, K., J. Shen, R. W. Ashton, R. P. White, I. C. Dodd, A. L. Phillips, M. A. Parry and W. R. Whalley. (2015b). The effect of impedance to root growth on plant architecture in wheat. Plant and Soil, 392(1-2), 323-332. https://doi.org/10.1007/s11104-015-2462-0

Jin, Z., X. Qing-wu, K. E. Jessup, H. Xiao-bo, H. Bao-zhen, T. H. Marek, X. Wenwei, S. R. Evett, S. A. O’Shaughnessy and D. K. Brauer. (2018). Shoot and root traits in drought tolerant maize (Zea mays L.) hybrids. Journal of Integra-tive Agriculture, 5(17), 1093-1105. https://doi.org/10.1016/S2095-3119(17)61869-0

Kadam, S., K. Singh, S. Shukla, S. Goel, P. Vikram, V. Pawar, K. Gaikwad, R. Khanna-Chopra and N. Singh. (2012). Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Functional & Integrative Genomics, 12(3), 447-464. https://doi.org/10.1007/s10142-012-0276-1

Khosravi, S., R. Azizinezhad, A. Baghizadeh and M. Maleki. (2020). Evaluation and comparison of drought toler-ance in some wild diploid populations, tetraploid and hexaploid cultivars of wheat using stress tolerance indi-ces. Acta agriculturae Slovenica, 115(1), 105-112. https://doi.org/10.14720/aas.2020.115.1.1336

Koolacharta, R., S. Jogloya, N. Vorasoota, S. Wongkaewb, C. C. Holbrookc, N. Jongrungklanga, T. Kesmalaa and A. Patanothaia. (2013). Rooting traits of peanut genotypes with different yield responses to terminal drought. Field Crops Research, 149, 366–378. https://doi.org/10.1016/j.fcr.2013.05.024

Mohammadi, R. and A. Abdulahi. (2017). Evaluation of durum wheat genotypes based on drought tolerance indi-ces under different levels of drought stress. Journal of Agricultural Sciences, Belgrade, 62(1), 1-14. https://doi.org/10.2298/JAS1701001M

Nadeem, M., J. Li, M. Yahya, A. Sher, C. Ma, X. Wang and L. Qiu. (2019). Research progress and perspective on drought stress in legumes: a review. International Journal of Molecular Sciences, 20(10), 1-32. https://doi.org/10.3390/ijms20102541

Richards, R. A. (2008). Genetic opportunities to improve cereal root systems for dryland agriculture. Plant Produc-tion Science, 11, 12–16. https://doi.org/10.1626/pps.11.12

Shanker, A. K., M. Maheswari, S. k. Yadav, S. Desai, D. Bhanu, N. B. Attal and B. Venkateswarlu (2014). Drought stress responses in crops. Functional & Integrative Genomics, 14(1), 11-22. https://doi.org/10.1007/s10142-013-0356-x

Harma, S., S. Z. Xu, B. Ehdaie, A. Hoops, T. J. Close, A. J. Lukaszewski and J. G. Waines. (2011). Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theoretical and Ap-plied Genetics, 122, 759–769. https://doi.org/10.1007/s00122-010-1484-5

Sinha, R., V. Irulappan, B. Mohan-Raju, A. Suganthi and M. Senthil-Kumar. (2019). Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. ScientificReports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-41463-z

Sofi, P. A., M. Djanaguiraman, K. H. M. Siddique and P. V. V. Prasad. (2018). Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Indian Journal of Plant Physiology, 23(4), 796-809. https://doi.org/10.1007/s40502-018-0429-x

Thangthonga N., S. Jogloya, V. Pensukb, T. Kesmalaa and N. Vorasoot. (2016). Distribution patterns of peanut roots under different durations ofearly season drought stress. Field Crops Research, 198, 40–49. https://doi.org/10.1016/j.fcr.2016.08.019




DOI: http://dx.doi.org/10.14720/aas.2021.117.4.2166

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2021

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941