Insekticidni proteini in njihova uporaba za zatiranje koloradskega hrošča (Leptinotarsa decemlineata [Say, 1824])
Povzetek
Rastline se na napad škodljivcev odzovejo med drugim tudi s tvorbo specifičnih proteinov z insekticidnim delovanjem. Proteine s toksičnim delovanjem na žuželke so odkrili tudi v številnih drugih organizmih, predvsem glivah in bakterijah. Zaradi omenjene biološke funkcije insekticidni proteini predstavljajo pomemben potencial v razvoju okolju prijaznih metod varstva rastlin. Poznavanje mehanizmov delovanja insekticidnih proteinov in identifikacija genov za njihovo sintezo omogočata žlahtnjenje transgenih sort rastlin odpornih na škodljive žuželke ter razvoj bioinsekticidnih učinkovin. Koloradski hrošč je pomemben škodljivec krompirja, zato je preučevanje tovrstnih načinov varstva rastlin ključno za razvoj trajnostnih strategij integriranega varstva krompirja. V prispevku povzemamo lastnosti nekaterih skupin insekticidno delujočih proteinov in njihovih mehanizmov delovanja ter primerov preučevanja njihove uporabe za zatiranje koloradskega hrošča.
Ključne besede
Celotno besedilo:
PDFLiteratura
Álvarez-Alfageme, F., Martínez, M., Pascual-Ruiz, S., Castañera, P., Diaz, I., Ortego, F. (2007). Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Research, 16(1), 1–13. https://doi.org/10.1007/s11248-006-9022-6
Alyokhin, A., Baker, M., Mota-Sanchez, D., Dively, G., Grafius, E. (2008). Colorado potato beetle resistance to insecticides. American Journal of Potato Research, 85(6), 395–413. https://doi.org/10.1007/s12230-008-9052-0
Ashouri, S., Farshbaf Pourabad, R. (2021). Regulation of gene expression encoding the digestive α-amylase in the larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) in response to plant protein extracts. Gene, 766, 145159. https://doi.org/10.1016/j.gene.2020.145159
Ashouri, S., Farshbaf Pourabad, R., Kocadağ Kocazorbaz, E., Zihnioglu, F. (2017). Influence of red kidney bean seed proteins on development, digestive α-amylase activity and gut protein pattern of Leptinotarsa decemlineata (Say). Journal of the Entomological Research Society, 19(3), 69–83.
Balaško, M. K., Mikac, K. M., Bažok, R., Lemic, D. (2020). Modern techniques in colorado potato beetle (Leptinotarsa decemlineata Say) control and resistance management: History review and future perspectives. Insects, 11(9), 1–17. https://doi.org/10.3390/insects11090581
Berne, S., Lah, L., Sepčić, K. (2009). Aegerolysins: Structure, function, and putative biological role. Protein Science, 18(4), 694–706. https://doi.org/10.1002/pro.85
Berry, C., Crickmore, N. (2017). Structural classification of insecticidal proteins – Towards an in silico characterisation of novel toxins. Journal of Invertebrate Pathology, 142, 16–22. https://doi.org/10.1016/j.jip.2016.07.015
Blackburn, M. B., Domek, J. M., Gelman, D. B., Hu, J. S. (2005). The broadly insecticidal Photorhabdus luminescens toxin complex a (Tca): Activity against the Colorado potato beetle, Leptinotarsa decemlineata, and sweet potato whitefly, Bemisia tabaci. Journal of Insect Science, 5. https://doi.org/10.1093/jis/5.1.32
Bohinc, T., Vučajnk, F., Trdan, S. (2019). The efficacy of environmentally acceptable products for the control of major potato pests and diseases. Zemdirbyste-Agriculture, 106(2), 135–142. https://doi.org/10.13080/z-a.2019.106.018
Bravo, A., Gill, S. S., Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon : official journal of the International Society on Toxinology, 49(4), 423—435. https://doi.org/10.1016/j.toxicon.2006.11.022
Bravo, A., Likitvivatanavong, S., Gill, S. S., Soberón, M. (2011). Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41(7), 423–431. https://doi.org/10.1016/j.ibmb.2011.02.006
Brunelle, F., Cloutier, C., Michaud, D. (2004). Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato. Archives of Insect Biochemistry and Physiology, 55(3), 103–113. https://doi.org/10.1002/arch.10135
Butala, M., Novak, M., Kraševec, N., Skočaj, M., Veranič, P., Maček, P., Sepčić, K. (2017). Aegerolysins: Lipid-binding proteins with versatile functions. Seminars in Cell and Developmental Biology, 72, 142–151). https://doi.org/10.1016/j.semcdb.2017.05.002
Carlini, C. R., Grossi-De-Sá, M. F. (2002). Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon, 40(11), 1515–1539. https://doi.org/10.1016/S0041-0101(02)00240-4
Chakroun, M., Banyuls, N., Bel, Y., Escriche, B., Ferré, J. (2016). Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiology and Molecular Biology Reviews, 80(2), 329 LP – 350. https://doi.org/10.1128/MMBR.00060-15
Chen, M. S., Johnson, B., Wen, L., Muthukrishnan, S., Kramer, K. J., Morgan, T. D., Reeck, G. R. (1992). Rice cystatin: Bacterial expression, purification, cysteine proteinase inhibitory activity, and insect growth suppressing activity of a truncated form of the protein. Protein Expression and Purification, 3(1), 41–49. https://doi.org/10.1016/1046-5928(92)90054-Z
Cingel, A., Savić, J., Lazarević, J., Ćosić, T., Raspor, M., Smigocki, A., Ninković, S. (2016). Extraordinary adaptive plasticity of colorado potato beetle: “Ten-striped Spearman” in the era of biotechnologicalwarfare. International Journal of Molecular Sciences, 17(9). MDPI AG. https://doi.org/10.3390/ijms17091538
Cingel, A., Savić, J., Lazarević, J., Ćosić, T., Raspor, M., Smigocki, A., Ninković, S. (2017). Co-expression of the proteinase inhibitors oryzacystatin I and oryzacystatin II in transgenic potato alters Colorado potato beetle larval development. Insect Science, 24(5), 768–780. https://doi.org/https://doi.org/10.1111/1744-7917.12364
Cloutier, C., Jean, C., Fournier, M., Yelle, S., Michaud, D. (2000). Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Archives of Insect Biochemistry and Physiology, 44(2), 69–81. https://doi.org/10.1002/1520-6327(200006)44:2<69::AID-ARCH2>3.0.CO;2-6
Cooper, S. G., Douches, D. S., Grafius, E. J. (2009). Combining engineered resistance, avidin, and natural resistance derived from & lt; I & gt; Solanum chacoense & lt;/I & gt; bitter to control Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 102(3), 1270–1280. https://doi.org/10.1603/029.102.0354
Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Dean, D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 807–813. https://doi.org/10.1128/mmbr.62.3.807-813.1998
Dang, L., Van Damme, E. J. M. (2015). Toxic proteins in plants. Phytochemistry, 117(1), 51–64). https://doi.org/10.1016/j.phytochem.2015.05.020
Domínguez-Arrizabalaga, M., Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., Caballero, P. (2020). Insecticidal activity of Bacillus thuringiensis proteins againstcoleopteran Pests. Toxins, 12(7), 430. https://doi.org/10.3390/toxins12070430
Donovan, W. P., Engleman, J. T., Donovan, J. C., Baum, J. A., Bunkers, G. J., Chi, D. J., Clinton, W. P., English, L., Heck, G. R., Ilagan, O. M., Krasomil-Osterfeld, K. C., Pitkin, J. W., Roberts, J. K., Walters, M. R. (2006). Discovery and characterization of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Applied Microbiology and Biotechnology, 72(4), 713–719. https://doi.org/10.1007/s00253-006-0332-7
Erjavec, J., Kos, J., Ravnikar, M., Dreo, T., Sabotič, J. (2012). Proteins of higher fungi - from forest to application. Trends in Biotechnology, 30(5), 259–273. https://doi.org/10.1016/j.tibtech.2012.01.004
Franco, O. L., Rigden, D. J., Melo, F. R., Grossi-de-Sá, M. F. (2002). Plant α-amylase inhibitors and their interaction with insect α-amylases. European Journal of Biochemistry, 269(2), 397–412. https://doi.org/https://doi.org/10.1046/j.0014-2956.2001.02656.x
Fürstenberg-Hägg, J., Zagrobelny, M., Bak, S. (2013). Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5), 10242–10297. https://doi.org/10.3390/ijms140510242
Gatehouse, A. M. R., Dewey, F. M., Dove, J., Fenton, K. A., Pusztai, A. (1984). Effect of seed lectins from Phaseolus vulgaris on the development of larvae of Callosobruchus maculatus; mechanism of toxicity. Journal of the Science of Food and Agriculture, 35(4), 373–380. https://doi.org/https://doi.org/10.1002/jsfa.2740350402
Grafius, E. J., Douches, D. S. (2008). The present and future role of insect-resistant genetically modified potato cultivars in IPM. V Integration of Insect-Resistant Genetically Modified Crops within IPM Programs (str. 195–221). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8373-0_7
Green, T. R., Ryan, C. A. (1972). Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science, 175(4023), 776–777. https://doi.org/10.1126/science.175.4023.776
Gruden, K., Kuipers, A. G. J., Gunčar, G., Slapar, N., Štrukelj, B., Jongsma, M. A. (2004). Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases. Insect Biochemistry and Molecular Biology, 34(4), 365–375. https://doi.org/10.1016/j.ibmb.2004.01.003
Gruden, K., Štrukelj, B., Popovič, T., Lenarčič, B., Bevec, T., Brzin, J., Kregar, I., Herzog-Velikonja, J., Stiekema, W. J., Bosch, D., Jongsma, M. A. (1998). The cysteine protease activity of Colorado potato beetle (Leptinotarsa decemlineata Say) guts, which is insensitive to potato protease inhibitors, is inhibited by thyroglobulin type-1 domain inhibitors. Insect Biochemistry and Molecular Biology, 28(8), 549–560. https://doi.org/10.1016/S0965-1748(98)00051-4
Jallouli, W., Driss, F., Fillaudeau, L., Rouis, S. (2020). Review on biopesticide production by Bacillus thuringiensis subsp. kurstaki since 1990: Focus on bioprocess parameters. V Process Biochemistry (Let. 98, str. 224–232). Elsevier Ltd. https://doi.org/10.1016/j.procbio.2020.07.023
Kalha, C. S., Singh, P. P., Kang, S. S., Hunjan, M. S., Gupta, V., Sharma, R. (2014). Entomopathogenic viruses and bacteria for insect-pest control. V Integrated Pest Management: Current Concepts and Ecological Perspective (str. 225–244). Elsevier Inc. https://doi.org/10.1016/B978-0-12-398529-3.00013-0
Kamionskaya, A. M., Kuznetsov, B. B., Ismailov, V. Y., Nadikta, V. D., Skryabin, K. G. (2012). Genetically transforming Russian potato cultivars for resistance to Colorado beetle. Clon Transgen, 1, 101. https://doi.org/10.4172/2168-9849.1000101
Lalitha, S., Shade, R. E., Murdock, L. L., Bressan, R. A., Hasegawa, P. M., Nielsen, S. S. (2005). Effectiveness of recombinant soybean cysteine proteinase inhibitors against selected crop pests. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 140(2), 227–235. https://doi.org/10.1016/j.cca.2005.02.007
Laznik, Ž., Tóth, T., Lakatos, T., Vidrih, M., Trdan, S. (2010). Control of the Colorado potato beetle (Leptinotarsa decemlineata [Say]) on potato under field conditions: a comparison of the efficacy of foliar application of two strains of Steinernema feltiae (Filipjev) and spraying with thiametoxam. Journal of Plant Diseases and Protection, 117(3), 129–135. https://doi.org/10.1007/BF03356348
Lecardonnel, A., Chauvin, L., Jouanin, L., Beaujean, A., Prévost, G., Sangwan-Norreel, B. (1999). Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Science, 140(1), 71–79. https://doi.org/10.1016/S0168-9452(98)00197-6
Martin, P. A. W., Blackburn, M., Shropshire, A. D. S. (2006). Two new bacterial pathogens of Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 97(3), 774–780. https://doi.org/10.1603/0022-0493(2004)097[0774:tnbpoc]2.0.co;2
Martinez, M., Santamaria, M. E., Diaz-Mendoza, M., Arnaiz, A., Carrillo, L., Ortego, F. (2016). Phytocystatins: Defense proteins against phytophagous insects and acari. International Journal of Molecular Sciences, 17(10). MDPI AG. https://doi.org/10.3390/ijms17101747
Mi, X., Ji, X., Yang, J., Liang, L., Si, H., Wu, J., Zhang, N., Wang, D. (2015). Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle. Comptes Rendus - Biologies, 338(7), 443–450. https://doi.org/10.1016/j.crvi.2015.04.005
Michaud, D., Nguyen-Quoc, B., Yelle, S. (1993). Selective inhibition of Colorado potato beetle cathepsin H by oryzacystatins I and II. FEBS Letters, 331(1–2), 173–176. https://doi.org/10.1016/0014-5793(93)80320-T
Michiels, K., Van Damme, E. J. M., Smagghe, G. (2010). Plant-insect interactions: what can we learn from plant lectins? Archives of Insect Biochemistry and Physiology, 73(4), 193–212. https://doi.org/https://doi.org/10.1002/arch.20351
Muratoglu, H., Demirbag, Z., Sezen, K. (2011). The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biologia, 66(2), 288–293. https://doi.org/10.2478/s11756-011-0021-6
Palma, L., Muñoz, D., Berry, C., Murillo, J., Caballero, P., Caballero, P. (2014). Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins, 6(12), 3296–3325). MDPI AG. https://doi.org/10.3390/toxins6123296
Panevska, A., Hodnik, V., Skočaj, M., Novak, M., Modic, Š., Pavlic, I., Podržaj, S., Zarić, M., Resnik, N., Maček, P., Veranič, P., Razinger, J., Sepčić, K. (2019). Pore-forming protein complexes from Pleurotus mushrooms kill western corn rootworm and Colorado potato beetle through targeting membrane ceramide phosphoethanolamine. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-41450-4
Panevska, A., Skočaj, M., Modic, Š., Razinger, J., Sepčić, K. (2020). Aegerolysins from the fungal genus Pleurotus – Bioinsecticidal proteins with multiple potential applications. Journal of Invertebrate Pathology, 107474. https://doi.org/10.1016/j.jip.2020.107474
Paul, S., Das, S. (2020). Natural insecticidal proteins, the promising bio-control compounds for future crop protection. The Nucleus. https://doi.org/10.1007/s13237-020-00316-1
Peumans, W. J., Van Damme, E. J. (1995). Lectins as plant defense proteins. Plant Physiology, 109(2), 347–352. https://doi.org/10.1104/pp.109.2.347
Pohleven, J., Brzin, J., Vrabec, L., Leonardi, A., Čokl, A., Štrukelj, B., Kos, J., Sabotič, J. (2011). Basidiomycete Clitocybe nebularis is rich in lectins with insecticidal activities. Applied Microbiology and Biotechnology, 91(4), 1141–1148. https://doi.org/10.1007/s00253-011-3236-0
Rane, A. S., Venkatesh, V., Joshi, R. S., Giri, A. P. (2020). Molecular investigation of Coleopteran specific α-amylase inhibitors from Amaranthaceae members. International Journal of Biological Macromolecules, 163, 1444–1450. https://doi.org/10.1016/j.ijbiomac.2020.07.219
Reed, G. L., Jensen, A. S., Riebe, J., Head, G., Duan, J. J. (2001). Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: comparative efficacy and non-target impacts. Entomologia Experimentalis et Applicata, 100(1), 89–100. https://doi.org/10.1046/j.1570-7458.2001.00851.x
Ryan, C. A. (1990). Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annual Review of Phytopathology, 28(1), 425–449.
https://doi.org/10.1146/annurev.py.28.090190.002233
Sabotič, J., Kos, J. (2012). Microbial and fungal protease inhibitors - Current and potential applications. Applied Microbiology and Biotechnology, 93(4), 1351–1375). https://doi.org/10.1007/s00253-011-3834-x
Sabotič, J., Ohm, R. A., Künzler, M. (2016). Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Applied Microbiology and Biotechnology, 100(1), 91–111). https://doi.org/10.1007/s00253-015-7075-2
Schlüter, U., Benchabane, M., Munger, A., Kiggundu, A., Vorster, J., Goulet, M. C., Cloutier, C., Michaud, D. (2010). Recombinant protease inhibitors for herbivore pest control: A multitrophic perspective. Journal of Experimental Botany, 61(15), 4169–4183. https://doi.org/10.1093/jxb/erq166
Singh, S., Singh, A., Kumar, S., Mittal, P., Singh, I. K. (2020). Protease inhibitors: recent advancement in its usage as a potential biocontrol agent for insect pest management. Insect Science, 27(2), 186–201. https://doi.org/10.1111/1744-7917.12641
Šmid, I., Gruden, K., Buh Gašparič, M., Koruza, K., Petek, M., Pohleven, J., Brzin, J., Kos, J., Žel, J., Sabotič, J. (2013). Inhibition of the growth of Colorado potato beetle larvae by macrocypins, protease inhibitors from the parasol mushroom. Journal of Agricultural and Food Chemistry, 61(51), 12499–12509. https://doi.org/10.1021/jf403615f
Šmid, I., Rotter, A., Gruden, K., Brzin, J., Buh Gašparič, M., Kos, J., Žel, J., Sabotič, J. (2015). Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pesticide Biochemistry and Physiology, 122, 59–66. https://doi.org/10.1016/j.pestbp.2014.12.022
Srp, J., Nussbaumerová, M., Horn, M., Mareš, M. (2016). Digestive proteolysis in the Colorado potato beetle, Leptinotarsa decemlineata: Activity-based profiling and imaging of a multipeptidase network. Insect Biochemistry and Molecular Biology, 78, 1–11. https://doi.org/10.1016/j.ibmb.2016.08.004
Trdan, S. (2013). Insecticides - Development of safer and more effective technologies. V Insecticides - Development of Safer and More Effective Technologies. InTech. https://doi.org/10.5772/3356
Trdan, S. (2016). Insecticides Resistance. V Insecticides Resistance. InTech. https://doi.org/10.5772/60478
Tripathi, A. K., Mishra, S. (2016). Biotechnological Approaches. V Ecofriendly Pest Management for Food Security (str. 685–701). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803265-7.00022-1
USEPA. (2010). BIOPESTICIDES REGISTRATION ACTION DOCUMENT. Bacillus thuringiensis Cry3Bb1 Protein and the Genetic Material Necessary for Its Production in MON 863 and MON 88017 Corns. http://www.epa.gov/pesticides/biopesticides/pips/cry3bb1-brad.pdf
Vandenborre, G., Smagghe, G., Van Damme, E. J. M. (2011). Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 72(13), 1538–1550).
https://doi.org/10.1016/j.phytochem.2011.02.024
Varrot, A., Basheer, S. M., Imberty, A. (2013). Fungal lectins: Structure, function and potential applications. Current Opinion in Structural Biology, 23(5), 678–685). https://doi.org/10.1016/j.sbi.2013.07.007
Visal, S., Taylor, M. A. J., Michaud, D. (1998). The proregion of papaya proteinase IV inhibits Colorado potato beetle digestive cysteine proteinases. FEBS Letters, 434(3), 401–405.
https://doi.org/10.1016/S0014-5793(98)01018-7
Walski, T., Van Damme, E. J. M., Smagghe, G. (2014). Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. Journal of Insect Physiology, 70, 94–101. https://doi.org/10.1016/j.jinsphys.2014.09.004
Wang, K., Shu, C., Zhang, J. (2019). Effective bacterial insecticidal proteins against coleopteran pests: A review. Archives of Insect Biochemistry and Physiology, 102(3), e21558. https://doi.org/https://doi.org/10.1002/arch.21558
Wang, M., Triguéros, V., Paquereau, L., Chavant, L., Fournier, D. (2002). Proteins as active compounds involved in insecticidal activity of mushroom fruitbodies. Journal of economic entomology, 95(3), 603–607. https://doi.org/10.1603/0022-0493-95.3.603
Wang, W., Hause, B., Peumans, W. J., Smagghe, G., Mackie, A., Fraser, R., Van Damme, E. J. M. (2003). The Tn antigen-specific lectin from ground ivy is an insecticidal protein with an unusual physiology. Plant Physiology, 132(3), 1322–1334. https://doi.org/10.1104/pp.103.023853
Whalon, M. E., Miller, D. L., Hollingworth, R. M., Grafius, E. J., Miller, J. R. (1993). Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. Journal of Economic Entomology, 86(2), 226–233. https://doi.org/10.1093/jee/86.2.226
Wolfson, J. L., Murdock, L. L. (1987). Suppression of larval Colorado potato beetle growth and development by digestive proteinase inhibitors. Entomologia Experimentalis et Applicata, 44(3), 235–240. https://doi.org/10.1111/j.1570-7458.1987.tb00550.x
Zhu, K., Huesing, J. E., Shade, R. E., Bressan, R. A., Hasegawa, P. M., Murdock, L. L. (1996). An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae). Plant Physiology, 110(1), 195 LP – 202. https://doi.org/10.1104/pp.110.1.195
DOI: http://dx.doi.org/10.14720/aas.2021.117.3.2221
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2021
##submission.license.cc.by-nc-nd4.footer##
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941