Analiza stabilnosti pridelka krme 16 genotipov navadnega grahorja (Lathyrus sativus L.) v ugodnih in slabih okoljskih razmerah
Povzetek
Vzgoja genotipov navadnega grahorja z veliko prilagodljivostjo v različnih okoljih je zelo pomembna za pridelavo krme. Pridelek suhe krme 16 genotipov navadnega grahorja je bil preiskušen v popolnem naključnem bločnem poskusi s tremi ponovitvami na štirih lokacijah v treh rastnih sezonah v Iranu. Grafična analiza odnosov med genotipi in različnimi okolji je na osnovi SREG (Site Regression model) modela omogočila ovrednotenje najboljših genotipov. Prvi dve glavni komponenti sta razložili 77 % interakcij med genotipi in okoljem (GE) in odkrili šest zmagovalnih gentipov v štirih mega okoljih. Za preverjanje najboljših genotipov glede pridelka in njegove stabilnosti je bila uporabljena poprečna koordinata lokacije (ALC), ki je označila genotype kot so IFLA-1913, IFLA-1961, IFLA-1812, in IFLA-2025 kot najboljše. Na osnovi koncepta idealnega genotipa je bil genotip G5 boljši kot vsi ostali, saj je imel velik in stabilen pridelek krme na vseh preučevanih lokacijah. Glede na vire razlik v interakcijah med genotipi in genotipi in okoljem (G + GE) so bili genotipi IFLA-1913, IFLA-1961, IFLA-1812, in IFLA-2025 najprimernejše sorte navadnega grahorja za pridelavo krme v razmerah polsušnih in z dežjem namakanih območih. Idealna lokacija bi morala biti prepoznana po genotipu in reprezentativni poprečni lokaciji, a takšne v tej raziskavi niso našli. Rezultati so potrdili, da bi lahko bil genotip G5 (IFLA-1961) z veliko stabilnostjo in velikostjo pridelka (4,92 t ha-1) lahko uveden kot priporočena komercialna sorta.
Ključne besede
Celotno besedilo:
PDF (English)Literatura
Berteroa, H., Dela Vegab, A.J., Correaa, G., Jacobsen C, S.E., & Mujica, A. (2004). Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research, 89, 299–318. https://doi.org/10.1016/j.fcr.2004.02.006
Burgueno, J., Crossa, J., & Vargas, M. (2003). Graphing GE and GGE biplots. Handbook of Formulas and Software for Plant Geneticists and Breeders. MS Kang (ed.). Food Products Press. New York pp. 193–203.
Croft, A., Pang E. C. K. M., & Taylor, P.W. J. (1999). Molecular analysis of Lathyrus sativus L. (grass pea) and related Lathyrus species. Euphytica, 107, 167–176. https://doi.org/10.1023/A:1003520721375
Eberhart, S.T., & Russell, W.A., (1966). Stability parameters for comparing varieties. Crop Science, 6, 36–40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x
Gauch, H.G., Piepho, H. P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science, 48, 866–889. https://doi.org/10.2135/cropsci2007.09.0513
Gcdt (2007). Strategy for the ex situ conservation of Lathyrus (grass pea), with special reference to Lathyrus sativus, L. cicera L. ochrus. Global Crop Diversity Trust. Rome, Italy. http://www.croptrust.org/documents/web/Lathyrus-Strategy-FINAL-31Oct07.pdf.
Gollob, H. F. (1968). A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika, 33, 73–115. https://doi.org/10.1007/BF02289676
Kang, M.S. (2002). Genotype–environment interaction: progress and prospects. In ‘Quantitative genetics, genomics and plant breeding. (Ed. MS Kang) pp. 221–243. https://doi.org/10.1079/9780851996011.0221
Kang, M. S., Aggarwal, V. D., & Chirwa, R. M. (2006). Adaptability and stability of bean cultivars as determined via yield-stability statistic and GGE biplot analysis. Journal of Crop Improvement, 15, 97–120. https://doi.org/10.1300/J411v15n01_08
Karimizadeh, R., Mohammadi, M., & Sabaghmia, N. (2013). Site regression biplot analysis for matching new improved lentil genotypes into target environment. Journal of Plant Physiology and Breeding, 3, 49–63.
Lambein, F., & Kuo-Genth, Y.H. (1997). Lathyrus sativus, a neolithic crop with modern future? An overview of the present situation. Presented at the int. conference “Lathyrus sativus -cultivation and nutritional value in animals and human” - Poland, Lublin - Radom, 9-10.06, 1997, Materials of the Conf. 6–12.
Sabaghnia, N. (2010). Multivariate statistical analysis of genotype × environment interaction in multi-environment trials of breeding programs. Agriculture and Forestry, 56, 19–31.
Sabaghnia, N., Karimizadeh, R., & Mohammadi, M. (2012). Genotype by environment interaction and stability analysis for grain yield of lentil genotypes. Žemdirbyste – Agriculture, 99, 305–312.
Sabaghnia, N., Karimizadeh, R., & Mohammadi, M. (2013). GGL biplot analysis of durum wheat (Triticum turgidum spp. durum) yield in multi-environment trials. Bulgarian Journal of Agriculture Science, 19, 756–765.
Setimela, P.S., Vivek, B., Bänziger, M., Crossa, J., & Maideni F. (2007). Evaluation of early to medium maturing open pollinated maize varieties in SADC region using GGE biplot based on the SREG model. Field Crops Research, 103, 161–169. https://doi.org/10.1016/j.fcr.2007.05.010
Smartt, J., Kaul, A., Araya, W.A., Rahman, M.M., & Kearney, J. (1994). Grasspea (Lathyrus sativus L.) as a potentially safe food legume crop. p. 144–155. In: F.J. Muehlbauer and W.J. Kaiser (eds.), Expanding the Production and Use of Cool Season Food Legumes. Kluwer Academic Publishers. Dordrecht, Netherlands. https://doi.org/10.1007/978-94-011-0798-3_7
YAN, W. (2001). GGE biplot–A windows application for graphical analysis of multi environment trial data and other types of two-way data. Agronomy Journal, 93, 1111–1118. https://doi.org/10.2134/agronj2001.9351111x
Yan, W. (2002). Singular value partitioning in biplot analysis of multi environment trial data. Agronomy Journal, 94, 990–996. https://doi.org/10.2134/agronj2002.9900
Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40, 597–605. https://doi.org/10.2135/cropsci2000.403597x
Yan, W., Kang, M. S., Woods, B., MA, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47, 643–655. https://doi.org/10.2135/cropsci2006.06.0374
Yan, W., & Tinker, N.A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86, 623-645. https://doi.org/10.4141/P05-169
Yau, S. K. (1995). Regression and AMMI analyses of genotype × environment interactions: An empirical comparison. Agronomy Journal, 87, 121–126. https://doi.org/10.2134/agronj1995.00021962008700010021x
Yihunie, T.A., & Gesesse, C.A. (2018). GGE biplot analysis of genotype by environment interaction in field pea (Pisum sativum L.) genotypes in Northwestern Ethiopia. Journal of Crop Science and Biotechnology, 21, 67-74. https://doi.org/10.1007/s12892-017-0099-0
DOI: http://dx.doi.org/10.14720/aas.2023.119.1.2227
Povratne povezave
- Trenutno ni nobenih povratnih povezav.
Avtorske pravice (c) 2023 Behrouz VAEZI, Hamid HATAMI MALEKI, Saeed YOUSEFZADEH, Reza PIROOZ, Askar JOZEYAN, Raham MOHTASHAMI, Naser SABAGHNIA
Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).
eISSN 1854-1941