UČINKI POVEČANIH KONCENTRACIJ KLORIDA NA IZRAŽANJE GENA ZA ENCIM Mn-SOD PRI TOBAKU

Akbar Norastehnia, Parvaneh SHEYDAEI

Povzetek


Klor je escencialno mikrohranilo, ki znantno prispeva k slanosti talne raztopine. Privzem Cl- poteka lažje kot drugih hranil zato so toksični učinki na rast pogostejši kot njegovo pomanjkanje. Solni stres vodi v oksidacijski stres preko tvorbe reaktivnih zvrsti kisika (ROS) in posledično v indukcijo antioksidativnega obrambnega sistema. V ta namen je bil v tej raziskavi preučevan učinek različnih koncentracij klora v vodi za namakanje na izražanje gena za mangan superoksid dizmutazo kot indikatorja aktivacije antioksidativnega sistema. Sadike tobaka so bile izpostavljene 2, 4, 8 mM koncentracijam CaCl2. Ovrednotenje izražanja gena za izoencim Mn-SOD je bilo opravljeno z RT-qPCR metodo (kvantitativni PCR z reverzno transkripcijo) 0, 3, 6 in 12 ur po obravnavanju. Rezultati so pokazali, da se je transkripcija gena za Mn-SOD povečala po treh urah obravnavanja z 8 mM CaCl2 in je dosegla višek po šestih urah. Na osnovi teh sprememb lahko zaključimo, da večje koncentracije kalcijevega klorida kot je 8 mM v vodi za namakanje tobaka povzročijo stres, ki vodi v aktivacijo antioksidacijskega odziva.

Ključne besede


klor; Mn-SOD; kvantitativni PCR z reverzno transkripcijo; solni stres

Celotno besedilo:

PDF (English)

Literatura


Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., Murata, N. 2000. Ionic and osmotic effects of NaCl-induced in activation of photosystems I and II in Synechococcus sp. Plant Physiol, 123: 1047-1056. DOI: 10.1104/PP.123.3.1047

Alscher, R.G., Hess, J.L. 1993. Antioxidants in higher plants, Boca Raton, FL. CRC press

Baek, K.H., Skinner, D.Z. 2003. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci. 165: 1221-1227. DOI: 10.1016/S0168-9452(03)00329-7

Basu, U., Good, A., Taylor, G. 2001. Transgenic Brassica napus plants overexpressing aluminium‐induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ. 24: 1278-1269. DOI: 10.1046/J.0016-8025.2001.00783.X

Baum, J.A., Scandalios, J.G. 1981. Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maize. Arch Biochem Biophys, 206: 249-264. DOI: 10.1016/0003-9861(81)90089-8

Bowler, C., Montagu, M.V., Inze, D. 1992. Superoxide dismutase and stress tolerance. Annu Rev Plant Biol. 43: 83-116. DOI: 10.1146/annurev.pp.43.060192.000503

Brou, YC., Zézé, A., Diouf, O., Eyletters, M. 2007. Water stress induces overexpression of superoxide dismutases that contribute to the protection of cowpea plants against oxidative stress. Afr J Biotech. 6: 1982-1986.

Esfandiari, E., Shakiba, M.R., Mahboob, S.A., Alyari, H., Toorchi, M. 2007. Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. J Food Agric Environ. 5: 149.

Faize, M., Burgos, L., Faize, L., Piqueras, A., Nicolas, E., Barba-Espin, G., Clemente-Moreno, M. et al. 2011. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot. 62: 2599-613. DOI: 10.1093/jxb/erq432. Epub 2011 Jan 14

Fridovich, I. 1986. Superoxide dismutases. Adv Enzymol RAMB, 58: 61-97. DOI: 10.1146/annurev.bi.44.070175.001051

Keunen, E., Remans, T., Bohler, S., Vangronsveld, J., Cuypers, A. 2011. Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci. 12: 6894-6918. DOI: 10.3390/ijms12106894

Koca, H., Bor, M., Özdemir, F., Türkan, İ. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot. 60: 344-351. DOI: 10.1016/j.envexpbot.2006.12.005

Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol Monograph. 1: 1-29.

Liu, X., Huang, B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40: 503-510. DOI: 10.1093/treephys/17.7.490

Livak, K.J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Method. 25: 402-408. DOI:10.1006/meth.2001.1262

Luis, A., Corpas, F.J., Sandalio, L.M., Palma, J.M., Gómez, M., Barroso, J.B. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot, 53: 1255-1272. DOI: 10.1093/jexbot/53.372.1255

Mahajan, S., Tuteja, N. 2005. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 444: 139-158. DOI:10.1016/j.abb.2005.10.018

Malecka, A., Piechalak, A. Mensinger, A., Hanc, A., Barałkiewicz, D., Tomaszewska, B. 2012. Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn). Pol J Environ Stud. 21: 1721-1730.

Norastehnia, A., Niazazari, M., Sarmad, J., Rassa, M. 2014. Effects of chloride salinity on non-enzymatic antioxidant activity, proline and malondialdehyde content in three flue-cured cultivars of tobacco. J. Plant Develop. 21: 75-82.

Palma, J.M., López‐Huertas, E., Corpas, F.J., Sandalio, L.M., Gómez, M., Del Río, L.A. 1998. Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol Plantarum. 104: 720-726. DOI: 10.1034/J.1399-3054.1998.1040429.X

Samis, K., Bowley, S., McKersie, B. 2002. Pyramiding Mn‐superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Exp Bot. 53: 1343-1350.

Sevilla, F., Lopez-Gorge, J., Gomez, M., Del Rio, L. 1980. Manganese superoxide dismutase from a higher plant. Planta. 150: 153-157. DOI: 10.1007/BF00582359

Shah, K., Nahakpam, S. 2012. Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Biochem. 57: 106-113. DOI: 10.1016/j.plaphy.2012.05.007

Sohani, M, Schenk, P. Schultz, C.J., Schmidt, O. 2009. Phylogenetic and transcriptional analysis of a strictosidine synthase‐like gene family in Arabidopsis thaliana reveals involvement in plant defence responses. Plant Biology. 11: 105-117. DOI:10.1111/J.1438-8677.2008.00139.X

Streller, S., Krömer, S., Wingsle, G., 1994. Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L. Plant Cell Physiol. 35: 859-867.

Teakle, N.L. and Tyerman, S.D. 2010. Mechanisms of Cl‐transport contributing to salt tolerance. Plant Cell Environ. 33: 566-589. DOI: 10.1111/J.1365-3040.2009.02060.X

Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Method Enzymol. 428: 419-438.

Vyas, D., Kumar, S. 2005. Purification and partial characterization of a low temperature responsive Mn-SOD from tea (Camellia sinensis (L.) O. Kuntze). Biochem Bioph Res Co. 329: 831-838. DOI: 10.1016/j.bbrc.2005.02.051




DOI: http://dx.doi.org/10.14720/aas.2017.109.1.05

Povratne povezave

  • Trenutno ni nobenih povratnih povezav.


Avtorske pravice (c) 2017

##submission.license.cc.by-nc-nd4.footer##

 

Acta agriculturae Slovenica je odprtodostopna revija, ki objavlja pod pogoji licence Creative Commons Priznanje avtorstva (CC BY).

                     


eISSN 1854-1941